首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   2篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  2001年   6篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
Replication of eukaryotic DNA is driven by a protein complex, in which the central part is played by DNA polymerases. Synthesis with eukaryotic DNA polymerases alpha, delta, and epsilon involves various replication factors, including the replication protein A, replication factor C, proliferating cell nuclear antigen, etc. Replication enzymes and factors also participate in DNA repair, which is in an interplay with DNA replication. The function of the entire multicomponent system is regulated by protein--nucleic acid and protein--protein interactions. The eukaryotic replication complex was not isolated as a stable supramolecular structure, suggesting its dynamic organization. Hence X-ray analysis and other instrumental techniques are hardly suitable for studying this system. An alternative approach is affinity modification. Its most promising version involves in situ generation of photoreactive DNA replication intermediates. The review considers the recent progress in photoaffinity modification studies of DNA polymerases, eukaryotic replication factors, and their interactions with DNA replication intermediates.  相似文献   
2.
Polarity of human replication protein A binding to DNA   总被引:6,自引:4,他引:2       下载免费PDF全文
Replication protein A (RPA), the nuclear single-stranded DNA binding protein is involved in DNA replication, nucleotide excision repair (NER) and homologous recombination. It is a stable heterotrimer consisting of subunits with molecular masses of 70, 32 and 14 kDa (p70, p32 and p14, respectively). Gapped DNA structures are common intermediates during DNA replication and NER. To analyze the interaction of RPA and its subunits with gapped DNA we designed structures containing 9 and 30 nucleotide gaps with a photoreactive arylazido group at the 3′-end of the upstream oligonucleotide or at the 5′-end of the downstream oligonucleotide. UV crosslinking and subsequent analysis showed that the p70 subunit mainly interacts with the 5′-end of DNA irrespective of DNA structure, while the subunit orientation towards the 3′-end of DNA in the gap structures strongly depends on the gap size. The results are compared with the data obtained previously with the primer–template systems containing 5′- or 3′-protruding DNA strands. Our results suggest a model of polar RPA binding to the gapped DNA.  相似文献   
3.
Eucaryotic DNA replication complex is now one of the most intensively studied subjects of molecular biology and biochemistry. In addition to detailed studies on the structures and functions of individual DNA polymerases involved in this process, other enzymes and protein factors are also given much attention. The structures and functions of proteins in the replication complexes are studied by various approaches, including X-ray diffraction analysis. At present, this approach provides sufficient information about the structures and functions of individual biopolymers and their complexes with ligands. However, this approach is unsuitable for studies on proteins, which cannot be cloned and isolated in amounts sufficient for X-ray diffraction analysis. Moreover, this approach is inapplicable for studies on multicomponent systems, such as DNA replication and repair complexes. Furthermore, data of X-ray diffraction analysis virtually never characterize the variety of dynamic interactions in enzymatic systems. Affinity modification is an alternative and rather successful approach for studies on structure-functional organization of supramolecular structures. This approach can be used for studies on individual enzymes and their complexes with substrates and also on systems consisting of numerous interacting proteins and nucleic acids. The purpose of this review is to analyze the available data obtained by affinity modification studies on the eucaryotic replication complex.  相似文献   
4.
Replication protein A (RPA) is a heterotrimeric protein that has high affinity for single-stranded (ss) DNA and is involved in DNA replication, repair, and recombination in eukaryotic cells. Photoaffinity modification was employed in studying the interaction of human RPA with DNA duplexes containing various gaps, which are similar to structures arising during DNA replication and repair. A photoreactive dUMP derivative was added to the 3" end of a gap-flanking oligonucleotide with DNA polymerase , and an oligonucleotide containing a 5"-photoreactive group was chemically synthesized. The 5" end predominantly interacted with the large RPA subunit (p70) regardless of the gap size, whereas interactions of the 3" end with the RPA subunits depended both on the gap size and on the RPA concentration. Subunit p32 was mostly labeled in the case of a larger gap and a lower RPA concentration. The results confirmed the model of polar RPA–DNA interaction, which has been advanced earlier.  相似文献   
5.
To introduce photoreactive dNTP residues to the 3'-end of a mononucleotide gap, base-substituted photoreactive deoxynucleoside triphosphate derivatives, (5-[N-(2,3,5,6-tetrafluoro-4-azidobenzoyl)-trans-3-aminopropenyl-1]- and 5-(N-[N-(4-azido-2,5-difluoro-3-chloropyridine-6-yl)-3-aminopropionyl]- trans-3-aminopropenyl-1)-2'-deoxyuridine 5'-triphosphates, were used as substrates in the DNA polymerase beta-catalyzed reaction. The resulting nick, containing a modified base at the 3'-end, was sealed by T4 phage DNA ligase. This approach enables the preparation of DNA duplexes bearing photoreactive groups at predetermined position(s) of the nucleotide chain. Using the generated photoreactive DNA duplexes, the photoaffinity modifications of DNA polymerase beta and human replicative protein A (hRPA) were carried out. It was shown that DNA polymerase beta and hRPA subunits were modified with the photoreactive double-stranded DNA considerably less effectively than by the nicked DNA. In the case of double-stranded DNA, the hRPA p70 subunit was preferentially labeled, implying a crucial role of this subunit in the protein-DNA interaction.  相似文献   
6.
Nicks and flaps are intermediates in various processes of DNA metabolism, including replication and repair. Photoaffinity modification was employed in studying the interaction of the replication protein A (RPA) and flap endonuclease 1 (FEN-1) with DNA duplexes similar to structures arising during long-patch base excision repair. The proteins were also tested for effect on DNA polymerase beta (Pol beta) interaction with DNA. Using Pol beta, a photoreactive dTTP analog was added to the 3' end of an oligonucleotide flanking a nick or a flap in DNA intermediates. The character and intensity of protein labeling depended on the type of intermediates and on the presence of the phosphate or tetrahydrofuran at the 5' end of a nick or a flap. Photoaffinity labeling of Pol beta substantially (up to three times) increased in the presence of RPA or FEN-1. Various DNA substrates were used to study the effects of RPA and FEN-1 on Pol beta-mediated DNA synthesis with displacement of a downstream primer. In contrast to FEN-1, RPA had no effect on DNA repair synthesis by Pol beta during long-patch base excision repair.  相似文献   
7.
Replication of eukaryotic DNA is performed by a protein complex in which the central part is played by DNA polymerases. Synthesis with eukaryotic DNA polymerases , , and involves various replication factors, including the replication protein A, replication factor C, proliferating cell nuclear antigen, etc. Replication enzymes and factors also participate in DNA repair, which is interrelated with DNA replication. The function of the entire multicomponent system is regulated by protein–nucleic acid and protein–protein interactions. The eukaryotic replication complex was not isolated as a stable supramolecular structure, suggesting its dynamic organization. Hence X-ray analysis and other instrumental techniques are hardly suitable for studying this system. An alternative approach is affinity modification. Its most promising version involves in situ generation of photoreactive DNA replication intermediates. The review considers the recent progress in photoaffinity modification studies of DNA polymerases, eukaryotic replication factors, and their interactions with DNA replication intermediates.  相似文献   
8.
Nicks and flaps are intermediates in various processes of DNA metabolism, including replication and repair. Photoaffinity modification was employed in studying the interaction of the replication protein A (RPA) and flap endonuclease 1 (FEN-1) with DNA duplexes similar to structures arising during long-patch base excision repair. The proteins were also tested for effect on DNA polymerase (Pol) interaction with DNA. Using Pol, a photoreactive dTTP analog was added to the 3" end of an oligonucleotide flanking a nick or a flap in DNA intermediates. The character and intensity of protein labeling depended on the type of intermediates and on the presence of the phosphate or tetrahydrofuran at the 5" end of a nick or a flap. Photoaffinity labeling of Pol substantially (up to three times) increased in the presence of RPA or FEN-1. Various DNA substrates were used to study the effects of RPA and FEN-1 on Pol-mediated DNA synthesis with displacement of a downstream primer. In contrast to FEN-1, RPA had no effect on DNA repair synthesis by Pol during long-patch base excision repair.  相似文献   
9.
The human nuclear single-stranded (ss) DNA- binding protein, replication protein A (RPA), is a heterotrimer consisting of three subunits: p70, p32 and p14. The protein–DNA interaction is mediated by several DNA-binding domains (DBDs): two major (A and B, also known as p70A and p70B) and several minor (C and D, also known as p70C and p32D, and, presumably, by p70N). Here, using crosslinking experiments, we investigated an interaction of RPA deletion mutants containing a subset of the DBDs with partial DNA duplexes containing 5′-protruding ssDNA tails of 10, 20 and 30 nt. The crosslinks were generated using either a ‘zero-length’ photoreactive group (4-thio-2′-deoxyuridine-5′-monophosphate) embedded in the 3′ end of the DNA primer, or a group connected to the 3′ end by a lengthy linker (5-{N-[N-(4-azido-2,5-difluoro-3- chloropyridine-6-yl)-3-aminopropionyl]-trans-3-aminopropenyl-1}-2′-deoxyuridine-5′-monophosphate). In the absence of two major DBDs, p70A and p70B, the RPA trimerization core (p70C·p32D·p14) was capable of correctly recognizing the primer– template junction and adopting an orientation similar to that in native RPA. Both p70C and p32D contributed to this recognition. However, the domain contribution differed depending on the size of the ssDNA. In contrast with the trimerization core, the RPA dimerization core (p32D·p14) was incapable of detectably recognizing the DNA- junction structures, suggesting an orchestrating role for p70C in this process.  相似文献   
10.
To introduce photoreactive dNMP residues to the 3"-end of a mononucleotide gap, base-substituted photoreactive deoxynucleoside triphosphate derivatives, (5-[N-(2,3,5,6-tetrafluoro-4-azidobenzoyl)-trans-3-aminopropenyl-1]- and 5-{N-[N-(4-azido-2,5-difluoro-3-chloropyridine-6-yl)-3-aminopropionyl]-trans-3-aminopropenyl-1}-2"-deoxyuridine 5"-triphosphates, were used as substrates in the DNA polymerase -catalyzed reaction. The resulting nick, containing a modified base at the 3"-end, was sealed by T4 phage DNA ligase. This approach enables the preparation of DNA duplexes bearing photoreactive groups at a predetermined position of the nucleotide chain. Using the generated photoreactive DNA duplexes, the photoaffinity modifications of DNA polymerase and human replication protein A (hRPA) were carried out. It was shown that DNA polymerase and hRPA subunits were modified with the photoreactive double-stranded DNA considerably less effectively than by the nicked DNA. In the case of double-stranded DNA, the hRPA p70 subunit was preferentially labeled, implying a crucial role of this subunit in the protein–DNA interaction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号