首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3749篇
  免费   354篇
  国内免费   1篇
  4104篇
  2024年   5篇
  2023年   12篇
  2022年   57篇
  2021年   86篇
  2020年   53篇
  2019年   46篇
  2018年   82篇
  2017年   78篇
  2016年   128篇
  2015年   237篇
  2014年   231篇
  2013年   262篇
  2012年   326篇
  2011年   350篇
  2010年   224篇
  2009年   188篇
  2008年   266篇
  2007年   262篇
  2006年   245篇
  2005年   172篇
  2004年   161篇
  2003年   162篇
  2002年   146篇
  2001年   32篇
  2000年   23篇
  1999年   39篇
  1998年   26篇
  1997年   18篇
  1996年   10篇
  1995年   11篇
  1994年   10篇
  1993年   9篇
  1992年   14篇
  1991年   10篇
  1990年   10篇
  1989年   5篇
  1988年   9篇
  1987年   9篇
  1986年   11篇
  1985年   7篇
  1984年   5篇
  1983年   4篇
  1982年   8篇
  1980年   7篇
  1977年   4篇
  1972年   4篇
  1971年   4篇
  1970年   6篇
  1969年   3篇
  1965年   3篇
排序方式: 共有4104条查询结果,搜索用时 0 毫秒
1.
2.
3.
The precise regulation of synapse maintenance is critical to the development and function of neuronal circuits. Using an in vivo RNAi screen targeting the Drosophila kinome and phosphatome, we identify 11 kinases and phosphatases controlling synapse stability by regulating cytoskeletal, phospholipid, or metabolic signaling. We focus on casein kinase 2 (CK2) and demonstrate that the regulatory (β) and catalytic (α) subunits of CK2 are essential for synapse maintenance. CK2α kinase activity is required in the presynaptic motoneuron, and its interaction with CK2β, mediated cooperatively by two N-terminal residues of CK2α, is essential for CK2 holoenzyme complex stability and function in vivo. Using genetic and biochemical approaches we identify Ankyrin2 as a key presynaptic target of CK2 to maintain synapse stability. In addition, CK2 activity controls the subcellular organization of individual synaptic release sites within the presynaptic nerve terminal. Our study identifies phosphorylation of structural synaptic components as a compelling mechanism to actively control the development and longevity of synaptic connections.  相似文献   
4.
The metabolism of 2-deoxy-D-galactose has been studied in AS-30D rat ascites hepatoma cells in suspension. Using 2-deoxy-D-(1-14C)galactose and an alkaline ethanol deproteinization procedure, the quantitatively identified metabolites included 2-deoxy-D-galactose 1-phosphate comprising 99.3%, and UDP-2-deoxy-D-galactose and UDP-2-deoxy-D-glucose, together amounting to 0.4% of the total metabolites. After incubation for 5 h in the presence of 2-deoxy-D-galactose (1 mmo1/1), the content of 2-deoxy-D-galactose 1-phosphate reached 35 mmo1x(kg cells)-1. The rate of phosphorylation of 2-deoxy-D-galactose was rapid during the first 30 min and decreased to approximately 20% of this rate during the subsequent hours. The rapid trapping of Pi in the form of 2-deoxy-D-galactose 1-phosphate resulted in a depression of free intracellular Pi in spite of a concomitant increase in net 32Pi uptake from the medium and a decrease of ATP and other 5'-nucleotides. The rates of glucose utilization and lactate production were depressed by more than 80% in the presence of 2-deoxy-D-galactose (1 mmo1/1). Interruption of Pi trapping by removal of 2-deoxy-D-galactose from the medium reversed the depressions of Pi and ATP and resulted in a rapid but incomplete relief of glycolysis inhibition. Crossover analysis of glycolytic intermediates indicated an inhibition at the 6-phosphofructokinase step. The depression of glucose utilization may be mediated by the increased level of glucose 6-phosphate, a potent inhibitor of hexokinase. An additional inhibitory effect of a metabolite of 2-deoxy-D-galactose at the 6-phosphofructokinase step was indicated by crossover analysis after reversal of Pi and ATP depressions in the presence of a high intracellular content of 2-deoxy-D-glactose 1-phosphate. The quantitative analysis of the metabolites of 2-deoxy-D-galactose demonstrated the predominance of the monophosphate and the negligible formation of UPD derivatives of this sugar analog in AS-30D hepatoma cells. This provides a system for the investigation of a galactose analog as a phosphate-trapping agent in the virtual absence of uridylate trapping.  相似文献   
5.
6.
7.
Aim Species capable of vigorous growth under a wide range of environmental conditions should have a higher chance of becoming invasive after introduction into new regions. High performance across environments can be achieved either by constitutively expressed traits that allow for high resource uptake under different environmental conditions or by adaptive plasticity of traits. Here we test whether invasive and non‐invasive species differ in presumably adaptive plasticity. Location Europe (for native species); the rest of the world and North America in particular (for alien species). Methods We selected 14 congeneric pairs of European herbaceous species that have all been introduced elsewhere. One species of each pair is highly invasive elsewhere in the world, particularly so in North America, whereas the other species has not become invasive or has spread only to a limited degree. We grew native plant material of the 28 species under shaded and non‐shaded conditions in a common garden experiment, and measured biomass production and morphological traits that are frequently related to shade tolerance and avoidance. Results Invasive species had higher shoot–root ratios, tended to have longer leaf‐blades, and produced more biomass than congeneric non‐invasive species both under shaded and non‐shaded conditions. Plants responded to shading by increasing shoot–root ratios and specific leaf area. Surprisingly, these shade‐induced responses, which are widely considered to be adaptive, did not differ between invasive and non‐invasive species. Main conclusions We conclude that high biomass production across different light environments pre‐adapts species to become invasive, and that this is not mediated by plasticities of the morphological traits that we measured.  相似文献   
8.
We have used quantitative DNase I footprinting to measure the relative affinities of four disubstituted and two monosubstituted amidoanthraquinone compounds for intermolecular DNA triplexes, and have examined how the position of the attached base-functionalized substituents affects their ability to stabilize DNA triplexes. All four isomeric disubstituted derivatives examined stabilize DNA triplexes at micromolar or lower concentrations. Of the compounds studied the 2,7-disubstituted amidoanthraquinone displayed the greatest triplex affinity. The order of triplex affinity for the other disubstituted ligands decreases in the order 2,7 > 1,8 = 1,5 > 2,6, with the equivalent monosubstituted compounds being at least an order of magnitude less efficient. The 1,5-disubstituted derivative also shows some interaction with duplex DNA. These results have been confirmed by molecular modelling studies, which provide a rational basis for the structure-activity relationships. These suggest that, although all of the compounds bind through an intercalative mode, the 2,6, 2,7 and 1,5 disubstituted isomers bind with their two side groups occupying adjacent triplex grooves, in contrast with the 1,8 isomer which is positioned with both side groups in the same triplex groove.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号