首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   111篇
  免费   7篇
  2022年   1篇
  2018年   1篇
  2017年   2篇
  2016年   3篇
  2015年   2篇
  2014年   4篇
  2013年   10篇
  2012年   3篇
  2011年   7篇
  2009年   6篇
  2008年   4篇
  2007年   7篇
  2006年   5篇
  2005年   6篇
  2004年   7篇
  2003年   14篇
  2002年   10篇
  2001年   4篇
  2000年   4篇
  1999年   5篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1992年   2篇
  1991年   4篇
  1983年   1篇
  1980年   1篇
  1975年   1篇
排序方式: 共有118条查询结果,搜索用时 15 毫秒
1.
A monoclonal antibody (mAb) TP-3 has been established by immunizing rats with the BALB/c mouse thymic epithelial cell line TEL-2. The TP-3 antigen is expressed on stroma cells of thymus, spleen, and lymph node in syngeneic BALB/c mice (H-2 d ). This antigen is also expressed at a low level on the cell surface of immature thymocytes, and at a high level on mature T and B cells. In allogeneic mice such as C57BL/6 (H-2 b ) or C3H (H-2 k ), no cells expressed the TP-3 antigen. Using H-2 congenic mice, reactivity with mAb TP-3 was found to map to a region of H-2D d L d or between D d and Qa, suggesting that TP-3 is a major histocompatibility complex (MHC) class I antigen. However, immunoprecipitation analysis indicated that this antigen is not identical to the classical mouse class I molecules in terms of molecular size, antigenicity, and tissue distribution.  相似文献   
2.
Abstract: It has been previously reported that Alzheimer's amyloid β protein (Aβ) induces reactive astrocytosis in culture. In the present study, we found that Aβ potently inhibits cellular redox activity of cultured astrocytes, as determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction assay. The following comparative studies revealed several differences between these two actions of Aβ on astrocytes. First, Aβ-induced reactive morphological change was suppressed by the presence of serum or thrombin, and Aβ inhibition of cellular redox activity was observed in either the presence or the absence of serum. Second, micromolar concentrations (10 µ M or more) were required for Aβ to induce reactive astrocytosis, whereas nanomolar concentrations (0.1–100 n M ) were sufficient to inhibit cellular redox activity. Third, the effect of micromolar Aβ was virtually irreversible, but nanomolar Aβ-induced inhibition of cellular redox activity was reversed by washing out Aβ. Furthermore, as it has been reported that Aβ neurotoxicity is mediated by reactive oxygen species, we also examined if similar mechanisms are involved in astrocytic response to Aβ. However, neither Aβ-induced morphological change nor inhibition of redox activity was blocked by antioxidants, suggesting that these effects are not caused by oxidative stress.  相似文献   
3.
4.
Ciliary and flagellar axonemes are basically composed of nine outer doublet microtubules and several functional components, e.g. dynein arms, radial spokes, and interdoublet links. Each A-tubule of the doublet contains a specialized "ribbon" of three protofilaments composed of tubulin and other proteins postulated to specify the three-dimensional arrangement of the various axonemal components. The interdoublet links hold the doublet microtubules together and limit their sliding during the flagellar beat. In this study on Chlamydomonas reinhardtii, we cloned a cDNA encoding a 71,985-Da polypeptide with three DM10 repeats, two C-terminal EF-hand motifs, and homologs extending to humans. This polypeptide, designated as Rib72, is a novel component of the ribbon compartment of flagellar microtubules. It remained associated with 9-fold arrays of doublet tubules following extraction under high and low ionic conditions, and anti-Rib72 antibodies revealed an approximately 96-nm periodicity along axonemes, consistent with Rib72 associating with interdoublet links. Following proteolysis- and ATP-dependent disintegration of axonemes, the rate of cleavage of Rib72 correlated closely with the rate of sliding disintegration. These observations identify a ribbon-associated protein that may function in the structural assembly of the axoneme and in the mechanism and regulation of ciliary and flagellar motility.  相似文献   
5.
6.
The planarian central nervous system (CNS) can be used as a model for studying neural regeneration in higher organisms. Despite its simple structure, recent studies have shown that the planarian CNS can be divided into several molecular and functional domains defined by the expression of different neural genes. Remarkably, a whole animal, including the molecularly complex CNS, can regenerate from a small piece of the planarian body. In this study, a collection of neural markers has been used to characterize at the molecular level how the planarian CNS is rebuilt. Planarian CNS is composed of an anterior brain and a pair of ventral nerve cords that are distinct and overlapping structures in the head region. During regeneration, 12 neural markers have been classified as early, mid-regeneration and late expression genes depending on when they are upregulated in the regenerative blastema. Interestingly, the results from this study show that the comparison of the expression patterns of different neural genes supports the view that at day one of regeneration, the new brain appears within the blastema, whereas the pre-existing ventral nerve cords remain in the old tissues. Three stages in planarian CNS regeneration are suggested.  相似文献   
7.
8.
The effects of a high concentration of glucose on the insulin receptor-down signaling were investigated in human hepatoma (HepG2) cells in vitro to delineate the molecular mechanism of insulin resistance under glucose toxicity. Treatment of the cells with high concentrations of glucose (15-33 mm) caused phosphorylation of serine residues of the insulin receptor substrate 1 (IRS-1), leading to reduced electrophoretic mobility of it. The phosphorylation of IRS-1 with high glucose treatment was blocked only by protein kinase C (PKC) inhibitors. The high glucose treatment attenuated insulin-induced association of IRS-1 and phosphatidylinositol 3-kinase and insulin-stimulated phosphorylation of Akt. A metabolic effect of insulin, stimulation of glycogen synthesis, was also inhibited by the treatment. In contrast, insulin-induced association of Shc and Grb2 was not inhibited. Treatment of the cells with high glucose promoted the translocation of PKCepsilon and PKCdelta from the cytosol to the plasma membrane but not that of other PKC isoforms. Finally, PKCepsilon and PKCdelta directly phosphorylated IRS-1 under cell-free conditions. We conclude that a high concentration of glucose causes phosphorylation of IRS-1, leading to selective attenuation of metabolic signaling of insulin. PKCepsilon and PKCdelta are involved in the down-regulation of insulin signaling, and they may lie in a pathway regulating the phosphorylation of IRS-1.  相似文献   
9.
The Gobioidei is a large suborder in the order Perciformes and consists of more than 2000 species belonging to about 270 genera. The vast number of species and their morphological specialization adapted to diverse habits and habitats makes the classification of the gobioid fishes very difficult.A comprehensive estimation of the evolutionary scenario of all gobioid fishes using only morphological information is difficult for two major reasons: first, in addition to wide ecological diversification, there is a trend towards specialization and degeneration of morphological characters among these species; second, an appropriate outgroup of gobioid fishes has not been recognized.Based upon nucleotide sequence comparisons of gobioid mitochondrial cytochrome b genes, we established the phylogenetic relationships of their differentiation into many groups of morphological and ecological diversity. The phylogenetic trees obtained show that most species examined have diverged from each other almost simultaneously or during an extremely short period of time.  相似文献   
10.
Toyoda R  Sato S  Ikeo K  Gojobori T  Numakunai T  Goding CR  Yamamoto H 《Gene》2000,259(1-2):159-170
Tyrosinase is the key enzyme required for the synthesis of melanin pigments. Sequence comparison and functional analysis of the 5' upstream regions of vertebrate tyrosinase genes have revealed the importance of conserved E-box motifs in regulating their specific expression in pigment cells, optic cup-derived retinal pigment epithelium (RPE) and neural crest-derived melanocytes. In ascidians (more basal protochordates), two pigment cells that resemble vertebrate RPE cells are formed and specifically express the orthologous tyrosinase gene (HrTyr) in the cerebral vesicle located at the anterior end of the neural tube. To define regulatory sequences required for pigment cell-lineage-specific expression of HrTyr during embryogenesis, a series of mutations of the 5' upstream region of HrTyr were fused to the lacZ reporter gene and were microinjected into fertilized eggs. We found that the -152bp upstream of the translational start site is essential for expression in pigment cell precursors of tailbud-stage embryos. Further, additional positive and unique restriction elements were identified in the region up to -1.8kb. Surprisingly, in the -152bp minimal promoter or in other regions with regulatory activities, there are no E-box motifs or sequences correlating with other conserved elements regulating vertebrate tyrosinase promoters. The possibility that Pax proteins regulate HrTyr expression is also discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号