首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7472篇
  免费   682篇
  国内免费   1篇
  2022年   45篇
  2021年   112篇
  2020年   78篇
  2019年   92篇
  2018年   97篇
  2017年   93篇
  2016年   155篇
  2015年   323篇
  2014年   311篇
  2013年   438篇
  2012年   521篇
  2011年   524篇
  2010年   341篇
  2009年   262篇
  2008年   383篇
  2007年   424篇
  2006年   364篇
  2005年   381篇
  2004年   331篇
  2003年   317篇
  2002年   338篇
  2001年   114篇
  2000年   104篇
  1999年   108篇
  1998年   116篇
  1997年   63篇
  1996年   62篇
  1995年   71篇
  1994年   56篇
  1993年   58篇
  1992年   76篇
  1991年   82篇
  1990年   93篇
  1989年   74篇
  1988年   55篇
  1987年   57篇
  1986年   51篇
  1985年   52篇
  1984年   63篇
  1983年   66篇
  1982年   68篇
  1981年   52篇
  1980年   53篇
  1979年   47篇
  1978年   60篇
  1977年   36篇
  1976年   30篇
  1974年   35篇
  1973年   41篇
  1972年   30篇
排序方式: 共有8155条查询结果,搜索用时 15 毫秒
1.
Intraspecific trait variation (ITV), based on available genetic diversity, is one of the major means plant populations can respond to environmental variability. The study of functional trait variation and diversity has become popular in ecological research, for example, as a proxy for plant performance influencing fitness. Up to now, it is unclear which aspects of intraspecific functional trait variation (iFDCV) can be attributed to the environment or genetics under natural conditions. Here, we examined 260 individuals from 13 locations of the rare (semi‐)dry calcareous grassland species Trifolium montanum L. in terms of iFDCV, within‐habitat heterogeneity, and genetic diversity. The iFDCV was assessed by measuring functional traits (releasing height, biomass, leaf area, specific leaf area, leaf dry matter content, Fv/Fm, performance index, stomatal pore surface, and stomatal pore area index). Abiotic within‐habitat heterogeneity was derived from altitude, slope exposure, slope, leaf area index, soil depth, and further soil factors. Based on microsatellites, we calculated expected heterozygosity (He) because it best‐explained, among other indices, iFDCV. We performed multiple linear regression models quantifying relationships among iFDCV, abiotic within‐habitat heterogeneity and genetic diversity, and also between separate functional traits and abiotic within‐habitat heterogeneity or genetic diversity. We found that abiotic within‐habitat heterogeneity influenced iFDCV twice as strong compared to genetic diversity. Both aspects together explained 77% of variation in iFDCV ( = .77, F2, 10 = 21.66, p < .001). The majority of functional traits (releasing height, biomass, specific leaf area, leaf dry matter content, Fv/Fm, and performance index) were related to abiotic habitat conditions indicating responses to environmental heterogeneity. In contrast, only morphology‐related functional traits (releasing height, biomass, and leaf area) were related to genetics. Our results suggest that both within‐habitat heterogeneity and genetic diversity affect iFDCV and are thus crucial to consider when aiming to understand or predict changes of plant species performance under changing environmental conditions.  相似文献   
2.
3.
Bulk precipitation and throughfall were collected in a wet lowland rainforest in SW Costa Rica on an event basis to allow modelling the contributions of dry deposition and canopy exchange to nutrient inputs and internal cycling of nutrients. Estimates based on bulk precipitation underestimated total atmospheric deposition to tropical rainforests by up to 10-fold ignoring the contributions of dry deposition. Canopy exchange contributed most of the aboveground inputs to the forest soil of Na+, about half for K+, 10% for P and Mg2+ and negligible for N, C and other elements. Tree species composition did not account for the differences found in net throughfall between forest sites, and vegetation structure (plant area index) had only a small effect on net throughfall. Forest regrowth affected net throughfall through reduced soil fertility and differences in leaf traits. Topography most significantly affected net throughfall via increased dry deposition at sites of higher elevation and via soil fertility and increased canopy exchange at down slope sites.  相似文献   
4.
By using the yeast two-hybrid system we identified a novel protein from the human brain interacting with the C terminus of somatostatin receptor subtype 2. This protein termed somatostatin receptor interacting protein is characterized by a novel domain structure, consisting of six N-terminal ankyrin repeats followed by SH3 and PDZ domains, several proline-rich regions, and a C-terminal sterile alpha motif. It consists of 2185 amino acid residues encoded by a 9-kilobase pair mRNA; several splice variants have been detected in human and rat cDNA libraries. Sequence comparison suggests that the novel multidomain protein, together with cortactin-binding protein, forms a family of cytoskeletal anchoring proteins. Fractionation of rat brain membranes indicated that somatostatin receptor interacting protein is enriched in the postsynaptic density fraction. The interaction of somatostatin receptor subtype 2 with its interacting protein was verified by overlay assays and coimmunoprecipitation experiments from transfected human embryonic kidney cells. Somatostatin receptor subtype 2 and the interacting protein display a striking overlap of their expression patterns in the rat brain. Interestingly, in the hippocampus the mRNA for somatostatin receptor interacting protein was not confined to the cell bodies but was also observed in the molecular layer, suggesting a dendritic localization of this mRNA.  相似文献   
5.
6.
7.
By combined application of chemical pretreatments, capillary gas-chromatography and mass spectrometry it was possible to enlighten the structure of atypical fatty acids with hydroxy groups and cyclopropane rings under the use of only a few of reference substances. The direct alkaline saponification of the sample with liberation of fatty acids and following methylation with boron trifluoride/methanol or diazomethane was proved to be the best method regarding to precision and speed of the sample cleanup.  相似文献   
8.
From a genomic library of Xenopus laevis, two genes coding for different preprocaeruleins have been isolated and sequenced. These correspond to the type I and type III precursors analyzed previously at the cDNA level [Richter, K., Egger, R. and Kreil, G. (1986) J. Biol. Chem. 261, 3676-3680]. The type III gene comprises eight exons; the type I apparently contains eight exons as well, of which six have been sequenced. The genetic information for the dekapeptide caerulein is present on small exons of 45 base pairs. The two genes are highly homologous in their 5'-flanking region, the exon/intron boundaries, and long stretches of intron sequences. A possible scheme for the evolution of this small family of genes through exon and gene duplications is presented. In the type I gene, in place of one of the caerulein exons, a potential exon with conserved splice sites was discovered. If expressed in some frog cells, this exon would code for a new peptide 60% homologous to caerulein.  相似文献   
9.
10.
A lightweight finger printing stand is described which can be adjusted to the proper printing height. Based upon experience printing over 1,100 subjects, 12 advantages of using the stand are suggested.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号