首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   168篇
  免费   10篇
  2023年   2篇
  2022年   3篇
  2021年   7篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2017年   4篇
  2016年   5篇
  2015年   6篇
  2014年   11篇
  2013年   21篇
  2012年   16篇
  2011年   10篇
  2010年   13篇
  2009年   10篇
  2008年   13篇
  2007年   8篇
  2006年   8篇
  2005年   13篇
  2004年   8篇
  2003年   5篇
  2002年   7篇
  1990年   1篇
  1988年   1篇
  1983年   1篇
排序方式: 共有178条查询结果,搜索用时 31 毫秒
1.
Biochemical Genetics - Misleading identification and subsequent publications on biological, molecular, and aquaculture data of mangrove mud crab (genus Scylla de Hann 1833) is a major concern in...  相似文献   
2.
3.
PhyA gene products of Aspergillus ficuum (AF) and Peniophora lycii (PL) as expressed in industrial strains of Aspergillus niger and Aspergillus oryzae, respectively, were purified to homogeneity and then characterized for both physical and biochemical properties. The PL phytase is 26 amino acid residues shorter than the AF phytase. Dynamic light scattering studies indicate that the active AF phytase is a monomer while the PL phytase is a dimer. While both of the phytases retained four identical glycosylatable Asn residues, unique glycosylation sites, six for PL and seven for AF phytase, were observed. Global alignment of both the phytases has shown 38% sequence homology between the two proteins. At 58 degrees C and pH 5.0, the PL phytase gave a specific activity of 22,000 nKat/mg as opposed to about 3000 nKat/mg for AF phytase. However, the AF phytase is more thermostable than its counterpart PL phytase at 65 degrees C. Also, AF phytase is more stable at pH 7.5 than the PL phytase. The two phytases differed in K(m) for phytate, K(i) for myo-inositol hexasulfate (MIHS), and pH optima profile. Despite similarities in the active site sequences, the two phytases show remarkable differences in turnover number, pH optima profile, stability at higher temperature, and alkaline pH. These biochemical differences indicate that phytases from ascomycete and basidiomycete fungi may have evolved to degrade phytate in different environments.  相似文献   
4.
Lipase-catalyzed alkoxycarbonylation methods offer potential advantages over the currently practiced industrial scale chemical synthesis of carbonates. We report a method for synthesis of organic carbonates via lipase-catalyzed alkoxycarbonylation between diphenyl carbonate and various alcohols in hexane. This method utilizes precursors that are readily available and does not involve extensive purification of the intermediate. In a two-step process, the two phenyl groups of diphenyl carbonate were substituted by two alcohol nucleophiles. The approach was demonstrated for two-step synthesis of 14 different disubstituted carbonate products. The rates of reaction for the two steps were much slower if the order of nucleophile addition was reversed. Under optimal conditions, complete conversion of diphenyl carbonate occurred within 8-15 h at 50 degrees C, which is a significant improvement from 50-90 h at 24 degrees C. A kinetic model for the alkoxycarbonylation reaction was derived based on the Michaelis-Menten equation, which simplified to first-order kinetics at low and equimolar concentration of substrates.  相似文献   
5.
After birth, stem cells in the subventricular zone (SVZ) generate neuroblasts that migrate along the rostral migratory stream (RMS) to become interneurons in the olfactory bulb (OB). This migration is crucial for the proper integration of newborn neurons in a pre-existing synaptic network and is believed to play a key role in infant human brain development. Many regulators of neuroblast migration have been identified; however, still very little is known about the intracellular molecular mechanisms controlling this process. Here, we have investigated the function of drebrin, an actin-binding protein highly expressed in the RMS of the postnatal mammalian brain. Neuroblast migration was monitored both in culture and in brain slices obtained from electroporated mice by time-lapse spinning disk confocal microscopy. Depletion of drebrin using distinct RNAi approaches in early postnatal mice affects neuroblast morphology and impairs neuroblast migration and orientation in vitro and in vivo. Overexpression of drebrin also impairs migration along the RMS and affects the distribution of neuroblasts at their final destination, the OB. Drebrin phosphorylation on Ser142 by Cyclin-dependent kinase 5 (Cdk5) has been recently shown to regulate F-actin-microtubule coupling in neuronal growth cones. We also investigated the functional significance of this phosphorylation in RMS neuroblasts using in vivo postnatal electroporation of phosphomimetic (S142D) or non-phosphorylatable (S142A) drebrin in the SVZ of mouse pups. Preventing or mimicking phosphorylation of S142 in vivo caused similar effects on neuroblast dynamics, leading to aberrant neuroblast branching. We conclude that drebrin is necessary for efficient migration of SVZ-derived neuroblasts and propose that regulated phosphorylation of drebrin on S142 maintains leading process stability for polarized migration along the RMS, thus ensuring proper neurogenesis.  相似文献   
6.
Global spectrum of CNVs is required to catalog variations to provide a high-resolution on the dynamics of genome-organization and human migration. In this study, we performed genome-wide genotyping using high-resolution arrays and identified 44,109 CNVs from 1,715 genomes across 12 populations. The study unraveled the force of independent evolutionary dynamics on genome-organizational plasticity across populations. We demonstrated the use of CNV tool to study human migration and identified a second major settlement establishing new migration routes in addition to existing ones.  相似文献   
7.
Earlier studies have established the importance of five disulfide bridges (DBs) in Aspergillus niger phytase. In this study, the relative importance of each of the individual disulfide bridge is determined by its removal by site-directed mutagenesis of specific cysteines in the cloned A. niger phyA gene. Individually, these mutant phytases were expressed in a Pichia expression system and their product purified and characterized. The removal of disulfide bridge 2 yielded a mutant phytase with a complete loss of catalytic activity. The other disulfide mutants displayed a broad array of altered catalytic properties including a lower optimum temperature from 58°C to 53°C for bridge number 1, 37°C for bridge number 3 and 4, and 42°C for bridge number 5. The pH versus activity profile was also modified in the DB mutants. The pH profile of the wild-type phytase was modified by the DB mutations. In bridge number 1, 3, and 4, the second peak at pH 2.5 was abolished, and in bridge number 5, the peak at pH 5.0 was abolished completely leaving only the pH 2.5. While the K m was not affected drastically, the turnover number was lowered significantly in bridge number 3, 4, and 5.  相似文献   
8.
This study reports bioavailability and metabolism of fucoxanthin (FUCO) from brown algae Padina tetrastromatica in rats. Rats were divided into two groups (n = 25/group). Group one was fed basal diet (control) while the group two received retinol deficient diet (RD group) for 8 weeks. After confirmed RD in blood (0.53 μmol/l), rats were further sub-grouped (n = 5/sub group), intubated a dose of FUCO (0.83 μmol) and killed after 0, 2, 4, 6 and 8 h. The plasma levels (area under curve/8 h) of FUCO (fucoxanthinol (FUOH) + amarouciaxanthin (AAx)) was 2.93 (RD group) and 2.74 pmol/dl (control), respectively. No newly formed retinol was detected in RD rats intubated with FUCO. Besides FUOH (m/z 617 (M+H)+) and AAx (m/z 617 (M+H?)+), other deacetylated, hydrolyzed and demethylated metabolites of bearing molecular mass at m/z 600.6 (FUOH–H2O), m/z 597 (AAx–H2O), m/z 579 (AAx–2H2O+1), m/z 551 (AAx–2H2O–2CH3+2) and m/z 523 (AAx–2H2O–4CH3+4) were also detected in plasma and liver by LC-MS (APCI). Although biological functions of FUCO metabolites need thorough investigation, this is the first detailed report on FUCO metabolites in rats.  相似文献   
9.
Oil palm frond parenchyma tissue was used as a solid substrate for the production of laccase via solid‐state fermentation using the white rot fungus Pycnoporus sanguineus. With a rectangular aluminium tray as solid‐state fermentation bioreactor, process parameters such as bed height, moisture and supplemented nitrogen (as urea solution) levels were studied and optimized using a statistical design of experiment. The moisture level exerted a significant effect on the process. The interaction effect observed between bed height and supplemented nitrogen level suggested that uniform distribution of supplemented nitrogen into the substrate bed was important. The proposed regression model sufficiently predicted the process response over the experimental range tested. The optimum parameter combination for laccase production was a 3‐cm bed height, 72% w/w moisture and 0.21% w/v supplemented nitrogen. Laccase productivity remained constant when the tray size was increased from 1.4 to 3.4‐fold.  相似文献   
10.
Peptidyl-tRNA hydrolase cleaves the ester bond between tRNA and the attached peptide in peptidyl-tRNA in order to avoid the toxicity resulting from its accumulation and to free the tRNA available for further rounds in protein synthesis. The structure of the enzyme from Mycobacterium tuberculosis has been determined in three crystal forms. This structure and the structure of the enzyme from Escherichia coli in its crystal differ substantially on account of the binding of the C terminus of the E. coli enzyme to the peptide-binding site of a neighboring molecule in the crystal. A detailed examination of this difference led to an elucidation of the plasticity of the binding site of the enzyme. The peptide-binding site of the enzyme is a cleft between the body of the molecule and a polypeptide stretch involving a loop and a helix. This stretch is in the open conformation when the enzyme is in the free state as in the crystals of M. tuberculosis peptidyl-tRNA hydrolase. Furthermore, there is no physical continuity between the tRNA and the peptide-binding sites. The molecule in the E. coli crystal mimics the peptide-bound enzyme molecule. The peptide stretch referred to earlier now closes on the bound peptide. Concurrently, a channel connecting the tRNA and the peptide-binding site opens primarily through the concerted movement of two residues. Thus, the crystal structure of M. tuberculosis peptidyl-tRNA hydrolase when compared with the crystal structure of the E. coli enzyme, leads to a model of structural changes associated with enzyme action on the basis of the plasticity of the molecule.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号