首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   124篇
  免费   4篇
  2023年   2篇
  2022年   1篇
  2021年   6篇
  2020年   1篇
  2018年   3篇
  2016年   1篇
  2015年   3篇
  2014年   4篇
  2013年   9篇
  2012年   9篇
  2011年   11篇
  2010年   5篇
  2009年   6篇
  2008年   10篇
  2007年   13篇
  2006年   9篇
  2005年   6篇
  2004年   5篇
  2003年   3篇
  2002年   3篇
  2001年   2篇
  1998年   3篇
  1997年   2篇
  1988年   1篇
  1983年   1篇
  1982年   6篇
  1981年   2篇
  1980年   1篇
排序方式: 共有128条查询结果,搜索用时 15 毫秒
1.
Abstract: Increased amounts of β-amyloid (Aβ) peptide deposits are found in Alzheimer's disease brain. These amyloid deposits have been implicated in the pathophysiology of this common dementing illness. Aβ peptides have been shown to be toxic to neurons in cell culture, and this toxicity is critically dependent on the aggregation of the peptide into cross-β-pleated sheet fibrils. Also, in vivo and postmortem NMR studies have shown changes in certain brain membrane phospholipid metabolites in normal aging and more extensive alterations in patients with Alzheimer's disease. The finding that membrane phospholipids affect the aggregation of Aβ suggests that the abnormalities in membrane metabolism found in Alzheimer's disease could affect the deposition of Aβ in vivo. Therefore, we examined the effect of membrane phospholipid metabolites that are altered in Alzheimer's disease brain on the aggregation of Aβ(1–40) using a light scattering method. Certain metabolites (glycerophosphocholine, glycerophosphoethanolamine, and α-glycerophosphate) augment the aggregation of Aβ. Other membrane phospholipid metabolites (phosphocholine, phosphoethanolamine, and inositol-1-phosphate) have no effect. We conclude that increased membrane phospholipid metabolite concentrations may play a role in the deposition of Aβ seen in normal aging and the even greater deposition of Aβ observed in Alzheimer's disease.  相似文献   
2.
3.
A longstanding question about the possible dependence of transmembrane peptide transport on sodium has now been resolved. Recent studies with purified intestinal brush border membrane vesicles have shown that peptide transport across this membrane is Na+-independent and occurs by a non-concentrative mechanism. Similar studies with renal brush border membrane vesicles have established for the first time the presence of a peptide transport system in mammalian kidney. The essential characteristics of peptide transport in these two tissues are the same. However, it still remains to be seen whether a new mechanism other than the Na+-gradient, hitherto unrecognized, is involved in energizing the active transport of peptides in vivo in mammalian intestine and kidney.  相似文献   
4.
Methionine sulfoxide is transported into purified intestinal and renal brush border membrane vesicles from rabbit by an Na+-dependent mechanism and is accumulated inside the vesicles against the concentration gradient. Both in intestine and kidney, the rate of transport is enhanced with increasing concentrations of Na+ in the external medium. Increasing the Na+ gradient reduces the apparent Kt for methionine sulfoxide without causing any change in Vmax. With an outward K+ gradient (vesicle > medium), valinomycin stimulates the Na+-gradient-dependent transport of methionine sulfoxide in the kidney, showing the electrogenicity of the transport process. A number of amino acids inhibit methionine sulfoxide transport in both the intestine and kidney. An enzymatic activity capable of reducing methionine sulfoxide to methionine is present in the intestinal mucosa, renal cortex and liver. The activity is highest in renal cortex and lowest in intestine. The methionine sulfoxide-reducing activity is stimulated by NADH, NADPH, glutathione and dithiothreitol and the potency of the stimulation is in the order: dithiothreitol > NADPH > glutathione > NADH.  相似文献   
5.
Molecular Biology Reports - Myricitrin, a naturally occurring flavonoid in Madhuca longifolia, possesses several medicinal properties. Even though our earlier work revealed its role against the...  相似文献   
6.
Neurogenesis is a life long process, but the rate of cell proliferation and differentiation decreases with age. In Alzheimer''s patients, along with age, the presence of Aβ in the brain inhibits this process by reducing stem cell proliferation and cell differentiation. GLP-1 is a growth factor that has neuroprotective properties. GLP1 receptors are present on neuronal progenitor cells, and the GLP-1 analogue liraglutide has been shown to increase cell proliferation in an Alzheimer''s disease (AD) mouse model. Here we investigated acute and chronic effects of liraglutide on progenitor cell proliferation, neuroblast differentiation and their subsequent differentiation into neurons in wild type and APP/PS-1 mice at different ages. APP/PS1 and their littermate controls, aged 3, 6, 12, 15 months were injected acutely or chronically with 25 nmol/kg liraglutide. Acute treatment with liraglutide showed an increase in cell proliferation in APP/PS1 mice, but not in controls whereas chronic treatment increased cell proliferation at all ages (BrdU and Ki67 markers). Moreover, numbers of immature neurons (DCX) were increased in both acute and chronic treated animals at all ages. Most newly generated cells differentiated into mature neurons (NeuN marker). A significant increase was observed with chronically treated 6, 12, 15 month APP/PS1 and WT groups. These results demonstrate that liraglutide, which is currently on the market as a treatment for type 2 diabetes (VictozaTM), increases neurogenesis, which may have beneficial effects in neurodegenerative disorders like AD.  相似文献   
7.
Citrate plays a pivotal role not only in the generation of metabolic energy but also in the synthesis of fatty acids, isoprenoids, and cholesterol in mammalian cells. Plasma levels of citrate are the highest ( approximately 135 microm) among the intermediates of the tricarboxylic acid cycle. Here we report on the cloning and functional characterization of a plasma membrane transporter (NaCT for Na+ -coupled citrate transporter) from rat brain that mediates uphill cellular uptake of citrate coupled to an electrochemical Na+ gradient. NaCT consists of 572 amino acids and exhibits structural similarity to the members of the Na+-dicarboxylate cotransporter/Na+ -sulfate cotransporter (NaDC/NaSi) gene family including the recently identified Drosophila Indy. In rat, the expression of NaCT is restricted to liver, testis, and brain. When expressed heterologously in mammalian cells, rat NaCT mediates the transport of citrate with high affinity (Michaelis-Menten constant, approximately 20 microm) and with a Na+:citrate stoichiometry of 4:1. The transporter does interact with other dicarboxylates and tricarboxylates but with considerably lower affinity. In mouse brain, the expression of NaCT mRNA is evident in the cerebral cortex, cerebellum, hippocampus, and olfactory bulb. NaCT represents the first transporter to be identified in mammalian cells that shows preference for citrate over dicarboxylates. This transporter is likely to play an important role in the cellular utilization of citrate in blood for the synthesis of fatty acids and cholesterol (liver) and for the generation of energy (liver and brain). NaCT thus constitutes a potential therapeutic target for the control of body weight, cholesterol levels, and energy homeostasis.  相似文献   
8.

Background  

Folate is essential for cellular proliferation and tissue regeneration. As mammalian cells cannot synthesize folates de novo, tightly regulated cellular uptake processes have evolved to sustain sufficient levels of intracellular tetrahydrofolate cofactors to support biosynthesis of purines, pyrimidines, and some amino acids (serine, methionine). Though reduced-folate carrier (RFC) is one of the major proteins mediating folate transport, knowledge of the developmental expression of RFC is lacking. We utilized in situ hybridization and immunolocalization to determine the developmental distribution of RFC message and protein, respectively.  相似文献   
9.
Taurine is activelytransported at the retinal pigment epithelial (RPE) apical membrane inan Na+- and Cl-dependent manner. Diabetes mayalter the function of the taurine transporter. Because nitric oxide(NO) is a molecule implicated in the pathogenesis of diabetes, we askedwhether NO would alter the activity of the taurine transporter incultured ARPE-19 cells. The activity of the transporter was stimulatedin the presence of the NO donor 3-morpholinosydnonimine. Thestimulatory effects of 3-morpholinosydnonimine were not observed duringthe initial 16-h treatment; however, stimulation of taurine uptake waselevated dramatically above control values with 20- and 24-htreatments. Kinetic analysis revealed that the stimulation wasassociated with an increase in the maximal velocity of the transporterwith no significant change in the substrate affinity. The NO-induced increase in taurine uptake was inhibited by actinomycin D and cycloheximide. RT-PCR analysis and nuclear run-on assays provided evidence for upregulation of the transporter gene. This study providesthe first evidence of an increase in taurine transporter geneexpression in human RPE cells cultured under conditions of elevatedlevels of NO.

  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号