首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   6篇
  2023年   1篇
  2021年   1篇
  2018年   1篇
  2015年   3篇
  2014年   2篇
  2013年   2篇
  2012年   3篇
  2011年   5篇
  2010年   1篇
  2009年   2篇
  2008年   3篇
  2007年   4篇
  2006年   3篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2000年   1篇
排序方式: 共有37条查询结果,搜索用时 15 毫秒
1.

Background

Chlorochromatium aggregatum’ is a phototrophic consortium, a symbiosis that may represent the highest degree of mutual interdependence between two unrelated bacteria not associated with a eukaryotic host. ‘Chlorochromatium aggregatum’ is a motile, barrel-shaped aggregate formed from a single cell of ‘Candidatus Symbiobacter mobilis”, a polarly flagellated, non-pigmented, heterotrophic bacterium, which is surrounded by approximately 15 epibiont cells of Chlorobium chlorochromatii, a non-motile photolithoautotrophic green sulfur bacterium.

Results

We analyzed the complete genome sequences of both organisms to understand the basis for this symbiosis. Chl. chlorochromatii has acquired relatively few symbiosis-specific genes; most acquired genes are predicted to modify the cell wall or function in cell-cell adhesion. In striking contrast, ‘Ca. S. mobilis’ appears to have undergone massive gene loss, is probably no longer capable of independent growth, and thus may only reproduce when consortia divide. A detailed model for the energetic and metabolic bases of the dependency of ‘Ca. S. mobilis’ on Chl. chlorochromatii is described.

Conclusions

Genomic analyses suggest that three types of interactions lead to a highly sophisticated relationship between these two organisms. Firstly, extensive metabolic exchange, involving carbon, nitrogen, and sulfur sources as well as vitamins, occurs from the epibiont to the central bacterium. Secondly, ‘Ca. S. mobilis’ can sense and move towards light and sulfide, resources that only directly benefit the epibiont. Thirdly, electron cycling mechanisms, particularly those mediated by quinones and potentially involving shared protonmotive force, could provide an important basis for energy exchange in this and other symbiotic relationships.  相似文献   
2.
Human thymine DNA glycosylase (TDG) was discovered as an enzyme that can initiate base excision repair at sites of 5-methylcytosine- or cytosine deamination in DNA by its ability to release thymine or uracil from G.T and G.U mismatches. Crystal structure analysis of an Escherichia coli homologue identified conserved amino acid residues that are critical for its substrate recognition/interaction and base hydrolysis functions. Guided by this revelation, we performed a mutational study of structure function relationships with the human TDG. Substitution of the postulated catalytic site asparagine with alanine (N140A) resulted in an enzyme that bound mismatched substrates but was unable to catalyze base removal. Mutation of Met-269 in a motif with a postulated role in protein-substrate interaction selectively inactivated stable binding of the enzyme to mismatched substrates but not so its glycosylase activity. These results establish that the structure function model postulated for the E. coli enzyme is largely applicable to the human TDG. We further provide evidence for G.U being the preferred substrate of TDG, not only at the mismatch recognition step of the reaction but also in base hydrolysis, and for the importance of stable complementary strand interactions by TDG to compensate for its comparably poor hydrolytic potential.  相似文献   
3.
By alternative use of four RSL (reactive site loop) coding exon cassettes, the serpin (serine protease inhibitor) gene Spn4 from Drosophila melanogaster was proposed to enable the synthesis of multiple protease inhibitor isoforms, one of which has been shown to be a potent inhibitor of human furin. Here, we have investigated the inhibitory spectrum of all Spn4 RSL variants. The analyses indicate that the Spn4 gene encodes inhibitors that may inhibit serine proteases of the subtilase family (S8), the chymotrypsin family (S1), and the papain-like cysteine protease family (C1), most of them at high rates. Thus a cohort of different protease inhibitors is generated simply by grafting enzyme-adapted RSL sequences on to a single serpin scaffold, even though the target proteases contain different types and/or a varying order of catalytic residues and are descendents of different phylogenetic lineages. Since all of the Spn4 RSL isoforms are produced as intracellular residents and additionally as variants destined for export or associated with the secretory pathway, the Spn4 gene represents a versatile defence tool kit that may provide multiple antiproteolytic functions.  相似文献   
4.
5.
Hyperosmolar factors induce the neurogenic inflammatory response, leading to bladder overactivity (OAB). The aim of the study was to compare the bladder motor activity in a hyperosmolar and acute cyclophosphamide (CYP)-induced model of OAB. Furthermore, we set our sights on defining the most physiological model of OAB in experimental practice. Forty-two female rats were divided randomly into 5 groups. All animals underwent cystometry with the usage of isotonic saline or saline of increasing concentration. Acute chemical cystitis was induced by CYP to elicit OAB. The following cystometric parameters were analyzed: basal pressure, threshold pressure, micturition voiding pressure, intercontraction interval, compliance, functional bladder capacity, motility index, and detrusor overactivity index. CYP and hypertonic saline solutions induced OAB. Having been compared with CYP OAB, none of the rats infused with hypertonic solution exhibited macroscopic signs of bladder inflammation. The comparison of CYP and hyperosmolar models of OAB revealed that the greatest similarity existed between the 2080 mOsm/L OAB model and the acute CYP-induced model. We postulate that the 2080 mOsm/L model of OAB can be established as being a less invasive and more physiological model when compared with the CYP-induced OAB model. Additionally, it may also be a more reliable experimental tool for evaluating novel therapeutics for OAB as compared with CYP-induced models.  相似文献   
6.
Acute myocardial infarction (AMI) is one of the most significant causes of morbidity and mortality worldwide. Stem cells represent an enormous chance to rebuild damaged heart tissue. Correct definition of the cardiac progenitors is necessary to understand heart development, and would pave the way for the use of cardiac progenitors in the treatment of heart disease. Identifying, purifying and differentiating native cardiac progenitor cells are indispensable if we are to overcome congenital and adult cardiac diseases. To understand their functions, physiology and action, cells are tested in animal models, and then in clinical trials. But because clinical trials yield variable results, questions about proper cardiac stem cells remain unanswered. Transplanted stem cells release soluble factors, acting in a paracrine fashion, which contributes to cardiac regeneration. Cytokines and growth factors have cytoprotective and neovascularizing functions, and may activate resident cardiac stem cells. Understanding all these mechanisms is crucial to overcoming heart diseases.  相似文献   
7.
Mathematical modeling is required for understanding the complex behavior of large signal transduction networks. Previous attempts to model signal transduction pathways were often limited to small systems or based on qualitative data only. Here, we developed a mathematical modeling framework for understanding the complex signaling behavior of CD95(APO-1/Fas)-mediated apoptosis. Defects in the regulation of apoptosis result in serious diseases such as cancer, autoimmunity, and neurodegeneration. During the last decade many of the molecular mechanisms of apoptosis signaling have been examined and elucidated. A systemic understanding of apoptosis is, however, still missing. To address the complexity of apoptotic signaling we subdivided this system into subsystems of different information qualities. A new approach for sensitivity analysis within the mathematical model was key for the identification of critical system parameters and two essential system properties: modularity and robustness. Our model describes the regulation of apoptosis on a systems level and resolves the important question of a threshold mechanism for the regulation of apoptosis.  相似文献   
8.
An easy method to measure the uptake rate of the persistent dye alizarin red S (ARS) during marking of whitefish eggs was established and used to measure the ARS content in three different whitefish species during and at the end of the marking procedure. Those values show that only 6–10% of the ARS in the marking solution will be absorbed by the eggs (0.0061–0.0119 mg per egg). Additional analyses 6, 15 and 36 months after marking showed ARS levels below the response level (<6.9 μg kg–1).  相似文献   
9.
European red deer are known to show a conspicuous phylogeographic pattern with three distinct mtDNA lineages (western, eastern and North-African/Sardinian). The western lineage, believed to be indicative of a southwestern glacial refuge in Iberia and southern France, nowadays covers large areas of the continent including the British Isles, Scandinavia and parts of central Europe, while the eastern lineage is primarily found in southeast-central Europe, the Carpathians and the Balkans. However, large parts of central Europe and the whole northeast of the continent were not covered by previous analyses. To close this gap, we produced mtDNA control region sequences from more than 500 red deer from Denmark, Germany, Poland, Lithuania, Belarus, Ukraine and western Russia and combined our data with sequences available from earlier studies to an overall sample size of almost 1,100. Our results show that the western lineage extends far into the European east and is prominent in all eastern countries except for the Polish Carpathians, Ukraine and Russia where only eastern haplotypes occurred. While the latter may actually reflect the natural northward expansion of the eastern lineage after the last ice age, the present distribution of the western lineage in eastern Europe may in large parts be artificial and a result of translocations and reintroduction of red deer into areas where the species became extinct in historical times.  相似文献   
10.
Batatasin‐III (3,3‐dihydroxy‐5‐methoxybibenzyl) is a phenolic compound associated with the allelopathic effect of the evergreen dwarf shrub Empetrum nigrum, and has been referred to as the causal factor for the species being successful in dominating extensive ecosystems. Yet, only a few plant species have been tested for their response to batatasin‐III, and little is known about whether environmental factors modify this allelopathic effect. In this study, we tested the inhibitory effect of purified batatasin‐III through bioassays on 24 vascular plant species and, for certain species, we tested if this effect depended on growth substrate (mineral vs organic substrate), pH, and fertilization. Moreover, we tested if batatasin‐III predicted the allelopathic effect of E. nigrum by analyzing the inhibitory effect of E. nigrum leaves and humus in relation to their batatasin‐III content. Our results confirmed batatasin‐III as a stable compound capable of inhibiting germination and/or mean root elongation in all of the tested species, but this effect was modified by growth substrate. Surprisingly, the measured batatasin‐III content of E. nigrum leaves (mean value 19.7 ± 10.8 (SE) mg g?1) and humus (mean value of 1 ± 1.5 (SE) μg g?1) did not predict the inhibitory effect on mean root elongation. Although batatasin‐III was found to be phytotoxic to all the tested species, we conclude that this substance alone should not be used as a proxy for the allelopathic effect of E. nigrum.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号