首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   0篇
  2014年   1篇
  2013年   3篇
  2012年   4篇
  2011年   7篇
  2010年   3篇
  2009年   1篇
  2008年   1篇
  1991年   1篇
排序方式: 共有21条查询结果,搜索用时 171 毫秒
1.
Oxidative stress, induced by various neurodegenerative diseases, initiates a cascade of events leading to apoptosis, and thus plays a critical role in neuronal injury. In this study, we have investigated the potential neuroprotective effect of the octadecaneuropeptide (ODN) on 6‐hydroxydopamine (6‐OHDA)‐induced oxidative stress and apoptosis in cerebellar granule neurons (CGN). ODN, which is produced by astrocytes, is an endogenous ligand for both central‐type benzodiazepine receptors (CBR) and a metabotropic receptor. Incubation of neurons with subnanomolar concentrations of ODN (10?18 to 10?12 M) inhibited 6‐OHDA‐evoked cell death in a concentration‐dependent manner. The effect of ODN on neuronal survival was abrogated by the metabotropic receptor antagonist, cyclo1–8[DLeu5]OP, but not by a CBR antagonist. ODN stimulated polyphosphoinositide turnover and ERK phosphorylation in CGN. The protective effect of ODN against 6‐OHDA toxicity involved the phospholipase C/ERK MAPK transduction cascade. 6‐OHDA treatment induced an accumulation of reactive oxygen species, an increase of the expression of the pro‐apoptotic gene Bax, a drop of the mitochondrial membrane potential and a stimulation of caspase‐3 activity. Exposure of 6‐OHDA‐treated cells to ODN blocked all the deleterious effects of the toxin. Taken together, these data demonstrate for the first time that ODN is a neuroprotective agent that prevents 6‐OHDA‐induced oxidative stress and apoptotic cell death.  相似文献   
2.
3.
Comparison of the abdominal muscle response to CO2 rebreathing in rapid-eye-movement (REM) and non-REM (NREM) sleep was performed in healthy premature infants near full term. Eight subjects were studied at a postconceptional age of 40 +/- 1.6 (SD) wk (range 38-43 wk) during spontaneous sleep. Sleep stages were defined on the basis of electrophysiological and behavioral criteria, and diaphragmatic and abdominal muscle electromyographic activity was recorded by cutaneous electrodes. The responses to CO2 were measured by a modified Read rebreathing technique. The minute ventilation and diaphragmatic and abdominal muscle electromyographic activities were calculated and plotted against end-tidal CO2 partial pressure. Both the ventilatory and diaphragmatic muscle responses to CO2 decreased from NREM to REM sleep (P less than 0.05). Abdominal muscles were forcefully recruited in response to CO2 rebreathing during NREM sleep. In REM sleep, abdominal muscle response to CO2 was virtually absent or decreased compared with NREM sleep (P less than 0.05). We conclude that 1) the abdominal muscles are recruited during NREM sleep in response to CO2 rebreathing in healthy premature infants near full term and 2) the abdominal muscle recruitment is inhibited during REM sleep compared with NREM sleep, and this REM sleep-related inhibition probably contributes to the decrease in the ventilatory response to CO2 rebreathing in REM sleep.  相似文献   
4.
5.
The aim of this work was to investigate the growth, mineral nutrition and essential oil composition of marjoram aerial part. Seedlings were cultivated for 20 days on nutrient solution, and then transferred to hydroponic solution with different NaCl concentrations (0, 50, 100, 150 mM). Plants were harvested after 17 days of treatment. Mineral nutrition and essential oil composition of shoots were determined. Results showed that growth, water content and development of the different organs of marjoram plant were affected just at the highest NaCl concentration (150 mM). Furthermore, salt did not seem to affect leaf area and root length but reduced the number of leaves. An increase in the total leaf surface and its thickness was observed at different NaCl concentrations. At 50 mM NaCl, sodium was primarily accumulated in roots but at 150 mM, it was strongly accumulated in leaves. However, Cl? accumulation was lower at higher NaCl concentrations. Essential oil yield of marjoram shoots was 0.12% in the control and 0.10% at 50 mM but an important decrease was observed at 100 mM (0.05%). Thirty-three components were identified belonging to different chemical classes. In the control, the essential oil was found to be rich in trans-sabinene hydrate (47.67%), terpinen-4-ol (20.82%) and cis-sabinene hydrate (7.23%). The proportions of these main compounds were differently affected by salt.  相似文献   
6.
Arabidopsis thaliana is a glycophyte capable to tolerate mild salinity. Although salt sensitivity of this species, a variability of this characteristic was revealed between different ecotypes. This study presents the physiological and molecular characteristics of salt response of two ecotypes, NOK2 and Columbia (Col). Seedlings were cultivated in hydroponics in the presence of 0 or 50 mM NaCl during 25 days. Rosette leaf samples were collected after 19, 22, and 25 days for determination of physiological parameters, and after 18 days for study of DNA polymorphism. Salt treatment decreased rosette dry matter, leaf number, leaf hydration, and leaf surface area. All these effects were significantly more visible in Col than in NOK2. Moreover, the NOK2 leaves accumulated less Na+ and more K+ than those of Col. DNA polymorphism between the two ecotypes was analyzed with codominant molecular markers based on PCR amplification, namely, microsatellites, cleaved amplified polymorphism sequence (CAPS), and single nucleotide polymorphism markers (SNP). Among the 35 tested markers, 17 showed a clear polymorphism and were distributed on the five Arabidopsis chromosomes ending with a genetic map construction. These results could play an important role in the future establishment of cartography of candidate gene controlling the K+/Na+ selectivity of ion transport in leaves, a component of plant salt tolerance.  相似文献   
7.
Salt stress perturbs a multitude of physiological processes such as photosynthesis and growth. To understand the biochemical changes associated with physiological and cellular adaptations to salinity, two lettuce varieties (Verte and Romaine) were grown in a hydroponics culture system supplemented with 0, 100 or 200 mM NaCl. Verte displayed better growth under 100 mM NaCl compared to Romaine, but both genotypes registered relatively similar reductions in growth under 200 mM NaCl treatment. Both varieties showed differences in net photosynthetic activity in the absence of salt and 8 days after salt treatment. These differences diminished subsequently under prolonged salt stress (14 days). Verte showed enhanced leaf proline and restricted total cations especially Na+, lesser malondialdehyde (MDA) formation and lignification in the roots under 100 mM NaCl salinity. Membrane damage estimated by electrolyte leakage increased with elevated salt concentrations in roots of both varieties, but Verte had significantly lower electrolyte leakage relative to Romaine under 100 mM NaCl. Moreover, Verte also accumulated greater levels of carotenoids under increasing NaCl concentrations compared to Romaine. Taken together, these findings suggest that the greater tolerance of Verte to 100 mM NaCl is related to the more restricted accumulation of total cations and toxic Na+ in the roots and enhanced levels of antioxidative metabolites in root and leaf tissue.  相似文献   
8.

Background

Viroids are the smallest pathogens known to date. They infect plants and cause considerable economic losses. The members of the Avsunviroidae family are known for their capability to form hammerhead ribozymes (HHR) that catalyze self-cleavage during their rolling circle replication.

Methods

In vitro inhibition assays, based on the self-cleavage kinetics of the hammerhead ribozyme from a Chrysanthemum chlorotic mottle viroid (CChMVd-HHR) were performed in the presence of various putative inhibitors.

Results

Aminated compounds appear to be inhibitors of the self-cleavage activity of the CChMVd HHR. Surprisingly the spermine, a known activator of the autocatalytic activity of another hammerhead ribozyme in the presence or absence of divalent cations, is a potent inhibitor of the CChMVd-HHR with Ki of 17 ± 5 μM. Ruthenium hexamine and TMPyP4 are also efficient inhibitors with Ki of 32 ± 5 μM and IC50 of 177 ± 5 nM, respectively.

Conclusions

This study shows that polyamines are inhibitors of the CChMVd-HHR self-cleavage activity, with an efficiency that increases with the number of their amino groups.

General significance

This fundamental investigation is of interest in understanding the catalytic activity of HHR as it is now known that HHR are present in the three domains of life including in the human genome. In addition these results emphasize again the remarkable plasticity and adaptability of ribozymes, a property which might have played a role in the early developments of life and must be also of significance nowadays for the multiple functions played by non-coding RNAs.  相似文献   
9.
We investigated the microbial community structure and population size of arboreal soils—including canopy and bromeliad epiphytic leaf-tank soils—and ground soils in a tropical lowland rainforest in Costa Rica using molecular and cultivation methods. PCR-DGGE analysis of 16S rRNA and 18S rRNA gene fragments and quantitative real-time PCR were applied to survey the bacteria, ammonia-oxidizing bacteria (AOB), and fungi. Bacteria from epiphytic tank soils were isolated and identified. Bacillaceae, Pseudomonadaceae and Micrococcaceae were the most abundant families. According to cluster analysis of DGGE fingerprints a significant difference among the three soil types was evident for bacterial communities. In addition, the microbial communities of canopy and tank soils clustered apart from ground soils. The fungal and AOB communities were diverse but non-specific for the soil types analyzed.  相似文献   
10.
Nasturtium officinale R. Br. seedlings were treated with a range of NaCl concentrations (0, 50, 100 and 150 mM) for 21 days after seedling emergence. Physiological analysis based on growth and mineral nutrition, showed a substantial decrease in leaf dry matter with 150 mM NaCl treatment. The growth decrease was correlated with nutritional imbalance and a reduction in potassium accumulation and transport to the leaves. At the same time, we noted an increase in leaf sodium and chloride accumulation and transport. Salt tolerance of N. officinale under 100 mM NaCl was associated with osmotic adjustment via Na+ and Cl? and the maintenance of high K+/Na+ selectivity. Salt decreased carotenoid content more than chlorophylls and also disturbed membrane integrity by increasing malondialdehyde content and electrolyte leakage. At 150 mM NaCl, an increase in antioxidant enzyme-specific activities for superoxide dismutase, catalase and guaiacol peroxidase occurred in concert with a decrease in ascorbic acid, polyphenol, tannin and flavonoid content. These results indicate that N. officinale can maintain growth and natural antioxidant defense compounds such as, vitamin C, carotenoids, and polyphenols, when cultivated in 100 mM NaCl, but not at higher salt levels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号