首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  2022年   1篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
排序方式: 共有6条查询结果,搜索用时 625 毫秒
1
1.

Characteristic improvements of photon/plasmon detectors have been the subject of several investigations in the area of plasmonic integrated circuits. Among different suggestions, silicon-based metal-semiconductor-metal (MSM) waveguides are one of the most popular structures for the implementation of high-quality photon/plasmon detectors in infrared wavelengths. In this paper, an integrated silicon-germanium (SiGe) core MSM plasmon detector is proposed to detect λ = 1550 nm with internal photoemission mechanism. Performance characteristics of the new sub-micron device are simulated with a simplified hydrodynamic model. In a specific bias point (V = 3 V and the incident optical power of 0.31 mW), the output current is 404.3 μA (276 μA detection current and 128.3 μA dark current), responsivity is 0.89 A/W, and the 3-dB electrical bandwidth is 120 GHz. Simulation results for the proposed plasmon detector, in comparison with the empirical results of a reported Si-based MSM device, demonstrate considerable responsivity enhancement.

  相似文献   
2.
Plasmonics - In this paper, we have proposed a new npn-type design of a CMOS-compatible metal/semiconductor/insulator/metal (MSIM) plasmonic structure, to be used as a different geometry to...  相似文献   
3.
Frequency of variations of surface plasmon intensity at the input of a plasmonic amplifier is called modulation–frequency. High modulation–frequency behavior of a Schottky junction-based plasmonic amplifier has been in the focus of this paper. Both small signal and large signal conditions have been considered. In small signal condition, an analytical solution of the rate equations of the electrons and photons has been presented which its results are in accordance with the simulation results of a harmonic balance method. For an amplifier of 100 μm length, the small signal gain has been 14.62 dB from both methods. Large signal behavior has been described by IIP2 and IIP3 in a two tone test which has been implemented by the harmonic balance method. IIP2 and IIP3 of the plasmonic amplifier of this work at 1 GHz are –21.2 and –19.95 dBm, respectively, and their values increase with frequency.  相似文献   
4.

A tunable high transmission optical bandpass filter based on a plasmonic hybrid nanostructure, composed of a periodic array of nanocircles and nanoholes combining two isolated waveguides is introduced in this paper. The presented design improves the coupling, which results in a higher transmission peak. To study the filtering operation, different topologies are investigated. The transmission properties and the resonance wavelengths are adjusted by sweeping various geometrical parameters. A multimode spectrum for each of the topologies is obtained. A tunable bandgap and bandwidth can be obtained by adjusting the refractive index of the periodic nanostructure. We have reached a maximum quality factor and a small full width at half-maximum bandwidth with the maximum transmission values greater than 80%. The advantages of the presented structures which include the benefits of both plasmonic and periodic nanostructures are tunability, high detection resolution, and integrability at the nanoscale for optical applications.

  相似文献   
5.
Plasmonics - Recently, many researches are reported on using germanium in silicon-based lasers but acquiring this potential for a plasmonic nanolaser may also be important for development of...  相似文献   
6.
We have numerically investigated an analog of electromagnetically induced transparency (EIT) in a metal-dielectric-metal (MDM) waveguide bend. The geometry consists of two asymmetrical stubs extending parallel to an arm of a straight MDM waveguide bend. Finite-difference time-domain simulations show that a transparent window is located at 1550 nm, which is the phenomenon of plasmonic-induced transparency (PIT). Signal wavelength is assumed to be 820 nm. The velocity of the plasmonic mode can be largely slowed down while propagating along the MDM bends. Multiple-peak plasmon-induced transparency can be realized by cascading multiple cavities with different lengths and suitable cavity-cavity separations. Large group index up to 73 can be obtained at the PIT window. Our proposed configuration may thus be applied to storing and stopping light in plasmonic waveguide bends. In addition, the relationship between the transmission characteristics and the geometric parameters including the radius of the nano-ring, the coupling distance, and the deviation length between the stub and the nano-ring is studied in a step further. The velocity of the plasmonic mode can be largely slowed down while propagating along the MDM bends. For indirect coupling, formation of transparency window is determined by resonance detuning, but, evolution of transparency is mainly attributed to the change of the coupling distance. Theoretical results may provide a guideline for control of light in highly integrated optical circuits. The characteristics of our plasmonic system indicate a significant potential application in integrated optical circuits such as optical storage, ultrafast plasmonic switch, highly performance filter, and slow light devices.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号