首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   484篇
  免费   53篇
  537篇
  2022年   5篇
  2021年   14篇
  2020年   9篇
  2019年   7篇
  2018年   9篇
  2017年   9篇
  2016年   18篇
  2015年   20篇
  2014年   22篇
  2013年   19篇
  2012年   26篇
  2011年   22篇
  2010年   13篇
  2009年   15篇
  2008年   26篇
  2007年   20篇
  2006年   21篇
  2005年   26篇
  2004年   29篇
  2003年   25篇
  2002年   12篇
  2001年   8篇
  2000年   6篇
  1999年   15篇
  1998年   12篇
  1997年   12篇
  1996年   7篇
  1995年   4篇
  1994年   5篇
  1993年   7篇
  1992年   10篇
  1991年   8篇
  1990年   10篇
  1989年   6篇
  1988年   6篇
  1987年   3篇
  1986年   4篇
  1985年   2篇
  1984年   2篇
  1983年   5篇
  1982年   7篇
  1980年   4篇
  1979年   2篇
  1978年   2篇
  1977年   3篇
  1974年   3篇
  1972年   6篇
  1970年   2篇
  1968年   3篇
  1967年   2篇
排序方式: 共有537条查询结果,搜索用时 0 毫秒
1.
The interaction between highly purified poly(ADP-ribose) polymerase from calf thymus and different topological forms of pBR322 DNA has been studied by gel retardation electrophoresis and electron microscopy. We show that: (i) in the absence of nicks on DNA the enzyme has a marked affinity for supercoiled (form I) DNA, (ii) in the presence of single stranded breaks poly(ADP-ribose) polymerase preferentially binds to form II, (iii) in all cases enzyme molecules are frequently located at DNA intersections, (iv) a cooperative binding of the enzyme on DNA occurs.  相似文献   
2.
Poly(ADP-ribose)polymerase: a novel finger protein.   总被引:6,自引:3,他引:3       下载免费PDF全文
By Energy Dispersive X-ray fluorescence we have determined that calf thymus poly(ADP-ribose) polymerase binds two zinc ions per enzyme molecule. Using 65Zn (II) for detection of zinc binding proteins and polypeptides on western blots, we found that the zinc binding sites are localized in a 29 kd N-terminal fragment which is included in the DNA binding domain. Metal depletion and restoration experiments proved that zinc is essential for the binding of this fragment to DNA as tested by Southwestern assay. These results correlate with the existence of two putative zinc finger motifs present in the N-terminal part of the human enzyme. Poly(ADP-ribose)polymerase fingers could be involved in the recognition of DNA strand breaks and therefore in enzyme activation.  相似文献   
3.
Antibodies showing a high specificity for poly(ADP ribose) synthetase have been purified. A fraction binding nonspecifically to histones present in antiserum and non-immune serum has been demonstrated by immunoblotting and separated by histone-Sepharose chromatography. The antibody without the nonspecific binding fraction was analyzed by Western blot with calf thymus protein extract and was found to react only with a band at 116 kDa. There was no reaction with purified topoisomerase I, this weak activity was copurified with poly(ADP-ribose) synthetase preparation. The specific IgG fraction has been used for the visualization of the interaction of poly(ADP-ribose) synthetase with chromatin by indirect gold-labelling. This immunomicroscopic study suggests that the synthetase is located in the inner part of polynucleosomes and would be associated preferentially with the core nucleosome.  相似文献   
4.
Hydrolysis of protein-bound 32P-labelled poly(ADP-ribose) by poly(ADP-ribose) glycohydrolase shows that there is differential accessibility of poly(ADP-ribosyl)ated proteins in chromatin to poly(ADP-ribose) glycohydrolase. The rapid hydrolysis of hyper(ADP-ribosyl)ated forms of histone H1 indicates the absence of an H1 dimer complex of histone molecules. When the pattern of hydrolysis of poly(ADP-ribosyl)ated histones was analyzed it was found that poly(ADP-ribose) attached to histone H2B is more resistant than the polymer attached to histone H1 or H2A or protein A24. Polymer hydrolysis of the acceptors, which had been labelled at high substrate concentrations (greater than or equal to 10 microM), indicate that the only high molecular weight acceptor protein is poly(ADP-ribose) polymerase and that little processing of the enzyme occurs. Finally, electron microscopic evidence shows that hyper(ADP-ribosyl)ated poly(ADP-ribose) polymerase, which is dissociated from its DNA-enzyme complex, binds again to DNA after poly(ADP-ribose) glycohydrolase action.  相似文献   
5.
The interaction between purified calf thymus poly(ADP-ribose) polymerase and its activating co-purified DNA (sDNA) was investigated by electron microscopy. We have shown that the enzyme-DNA complex possesses a nucleosome-like structure. The enzyme-bound DNA (sDNA) was found to be enriched in single-stranded regions and branched structures, presumed to be replication forks. The auto-ribosylated polymerase as well as the branched poly(ADP-ribose) formed were visualized by dark field electron microscopy during the auto-ADP-ribosylation reaction and the possible mechanism of this phenomenon is discussed.  相似文献   
6.
The effect of poly(ADP-ribose) synthesis on chromatin structure was investigated by velocity sedimentation and electron microscopy. We demonstrate that locally relaxed regions can be generated within polynucleosome chains by the activity of their intrinsic poly(ADP-ribose)polymerase. This relaxation phenomenon is also shown to be NAD dependent and to be correlated with the formation of hyper(ADP-ribosyl)ated forms of histone H1. Evidence is also presented which suggests that hyper(ADP-ribosyl)ated histone H1 is neither released from the relaxed chromatin, nor does it seem to participate in polynucleosomal aggregation.  相似文献   
7.
Summary Amo 1618 inhibits germination and root growth of Lentil seedlings in the dark and in the light, with some symptoms of toxicity; CCC has no effect.Both CCC and Amo 1618 inhibit the catalase activity of a lentil root extract.Increasing concentrations of Amo 1618 progressively increase the activity of peroxidase and IAA-oxidase in vivo; the catalase activity remains unchanged.The effect of Amo 1618 on root growth can thus be explained by a diminished auxin level mediated by an increased auxin catabolism.The effect of Amo 1618 and that of kinetin on root growth and enzymes are parallet. Gibberellic acid has an opposite effect on auxin catabolism.

Une partie de ce travail a fait l'objet du mémoire de Licence de J. L. et a été réalisée au Laboratoire de Biochimie végétale de l'Institut de Botanique de Liège.  相似文献   
8.
Summary A histological, histochemical and ultrastrucutral study of the pars intercerebralis (PI) has been made in Locusta migratoria. The acellular neural lamella is made up of an elastic tissue and collagen fibrils. The cells of the perilemma contain numerous lysosome structures and lipid granules.Three different types of neurosecretory cells (NSC A, B and C) have been distinguished in the PI associated with giant neurons.The cells termed A and B seem not to have an activity cycle during the two last larval instars. At the moment of sexual maturity the NSC A show an important accumulation of neurosecretory material and their number increases at the expense of the NSC B. The NSC A, which are characterized by a highly developped endoplasmic reticulum, contain numerous secretory granules which appear to be individualized in the Golgi complex in three different ways. The NSC B, with a reduced endoplasmic reticulum and an almost quiescent Golgi complex, contain abundant lysosome structures and more seldom some neurosecretory granules. In fact, the study of the fine structure shows different intermediate types, linking in a continuous way typical A cells and typical B cells. NSC A and NSC B might correspond to two opposed stages of secretory activity of one single cell type: the A cell representing the activity stage and the B cell the quiescent stage.NSC C show an accumulation of their neurosecretory products in relation to metamorphosis and sexual maturity. Ultrastructural evidence confirms their neurosecretory activity.A mode of regulating neurosecretion in NSC A and B by internal catabolism of the secretion and formation of lysosome like structures is discussed in the present paper.The giant neurons, which are surrounded by a glial envelope (trophospongium), contain several dense granules originated from Golgi complex.  相似文献   
9.
Summary Hereditary cystatin C amyloid angiopathy has recently been shown to be caused by a point mutation in the cystatin C gene. To determine the chromosomal localization of the gene, 20 human-rodent somatic cell hybrids and a fulllength cystatin C cDNA probe were used. Southern blot analysis of BamHI digested cell hybrid DNA revealed that the probe recognizes a 10.6 kb human specific fragment and that this fragment cosegregates with human chromosome 20. Therefore, the human cystatin C gene (CST3) was assigned to chromosome 20.  相似文献   
10.
The effect of poly(ADP-ribosyl)ation on native and H1-depleted chromatin was analyzed by gel electrophoresis, electron microscopy, and velocity sedimentation. In parallel, the interaction of automodified poly(ADP-ribose) polymerase with native and H1-depleted chromatin was analyzed. In H1-depleted chromatin histone H2B becomes the major poly(ADP-ribose) histone acceptor protein, whereas in native chromatin histone H1 was the major histone acceptor. Poly(ADP-ribosyl)ation of H1-depleted chromatin prevented the recondensation of polynucleosomes reconstituted with exogenous histone H1. This is probably due to the presence of modified poly(ADP-ribose) polymerase and hyper(ADP-ribosyl)ated histone H2B. Indeed, about 40% of the modified enzyme remained associated with H1-depleted chromatin, while less than 1% of the modified enzyme was bound to native chromatin. The influence of poly(ADP-ribosyl)ation on the chromatin conformation was also studied at the level of nucleosome in using monoclonal and polyclonal antibodies specific for individual histones and synthetic peptides of histones. In native chromatin incubated in the presence of Mg2+ there was a drop in the accessibility of histone epitopes to monoclonal and polyclonal antibodies whereas upon poly(ADP-ribosyl)ation their accessibility was found to remain even in the presence of Mg2+. In poly(ADP-ribosyl)ated H1-depleted chromatin an increased accessibility of some histone tails to antibodies was observed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号