首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   145篇
  免费   5篇
  国内免费   2篇
  2023年   1篇
  2022年   1篇
  2020年   2篇
  2019年   3篇
  2018年   4篇
  2017年   5篇
  2016年   5篇
  2015年   8篇
  2014年   5篇
  2013年   12篇
  2012年   18篇
  2011年   18篇
  2010年   7篇
  2009年   1篇
  2008年   9篇
  2007年   11篇
  2006年   10篇
  2005年   9篇
  2004年   6篇
  2003年   4篇
  2002年   4篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1985年   1篇
排序方式: 共有152条查询结果,搜索用时 15 毫秒
1.
Manganese in cell metabolism of higher plants   总被引:1,自引:0,他引:1  
Manganese, a group VII element of the periodic table, plays an important role in biological systems and exists in a variety of oxidation states. The normal level of Mn in air surrounding major industrial sites is 0.03 μg/m3, in drinking water 0.05 mg/liter and in soil between 560 and 850 ppm. Manganese is an essential trace element for higher plant systems. It is absorbed mainly as divalent Mn2+, which competes effectively with Mg2+ and strongly depresses its rate of uptake. The accumulation of Mn particularly takes place in peripheral cells of the leaf petiole, petiolule and palisade and spongy parenchyma cells. Mn is involved in photosynthesis and activation of different enzyme systems. Mn deficiency may be expressed as inhibition of cell elongation and yield decrease. Mn toxicity is one of the important growth limiting factors in acid soils. Plant tops are affected to a greater extent than root systems. The toxicity symptoms are, in general, similar to the deficiency symptoms. Toxic effects of Mn on plant growth have been attributed to several physiological and biochemical pathways, although the detailed mechanism is still not very clear. Higher O2 uptake and loss of control in Mn activated enzyme systems have been associated with Mn toxicity. Mn interferes with the uptake, transport and use of several essential elements including Ca, Fe, Cu, Al, Si, Mg, K, P and N. Excess of Mn reduces the uptake of certain elements and increases that of others. pH plays an important role in Mn uptake. Acidic pH causes a lack of substantial amount of nitrate as an alternative electron acceptor and leads to a high amount of Mn in leaves. High microbial activity, water logging and poorly structured soils cause severe Mn toxicity even in neutral soils. The molecular mechanism of Mn-tolerance is not yet clear. The level of tolerance is different in different species and seems to be controlled by more than one gene. Further information is required on the factors affecting the distribution, accumulation and membrane permeability of the metal in different plant parts and different species. Understanding of the genetic basis of Mn-tolerance is necessary to improve adaptation of crops against acid soils, water logging and other adverse soil conditions.  相似文献   
2.
Heart failure with preserved ejection fraction (HFpEF) is the most common type of HF in older adults. Although no pharmacological therapy has yet improved survival in HFpEF, exercise training (ExT) has emerged as the most effective intervention to improving functional outcomes in this age‐related disease. The molecular mechanisms by which ExT induces its beneficial effects in HFpEF, however, remain largely unknown. Given the strong association between aging and HFpEF, we hypothesized that ExT might reverse cardiac aging phenotypes that contribute to HFpEF pathophysiology and additionally provide a platform for novel mechanistic and therapeutic discovery. Here, we show that aged (24–30 months) C57BL/6 male mice recapitulate many of the hallmark features of HFpEF, including preserved left ventricular ejection fraction, subclinical systolic dysfunction, diastolic dysfunction, impaired cardiac reserves, exercise intolerance, and pathologic cardiac hypertrophy. Similar to older humans, ExT in old mice improved exercise capacity, diastolic function, and contractile reserves, while reducing pulmonary congestion. Interestingly, RNAseq of explanted hearts showed that ExT did not significantly modulate biological pathways targeted by conventional HF medications. However, it reversed multiple age‐related pathways, including the global downregulation of cell cycle pathways seen in aged hearts, which was associated with increased capillary density, but no effects on cardiac mass or fibrosis. Taken together, these data demonstrate that the aged C57BL/6 male mouse is a valuable model for studying the role of aging biology in HFpEF pathophysiology, and provide a molecular framework for how ExT potentially reverses cardiac aging phenotypes in HFpEF.  相似文献   
3.
Pseudouridines (Ψ) are found in structurally and functionally important regions of RNAs. Six families of Ψ synthases, TruA, TruB, TruD, RsuA, RluA, and Pus10 have been identified. Pus10 is present in Archaea and Eukarya. While most archaeal Pus10 produce both tRNA Ψ54 and Ψ55, some produce only Ψ55. Interestingly, human PUS10 has been implicated in apoptosis and Crohn’s and Celiac diseases. Homology models of archaeal Pus10 proteins based on the crystal structure of human PUS10 reveal that there are subtle structural differences in all of these Pus10 proteins. These observations suggest that structural changes in homologous proteins may lead to loss, gain, or change of their functions, warranting the need to study the structure-function relationship of these proteins. Using comparison of structural models and a series of mutations, we identified forefinger loop (reminiscent of that of RluA) and an Arg and a Tyr residue of archaeal Pus10 as critical determinants for its Ψ54, but not for its Ψ55 activity. We also found that a Leu residue, in addition to the catalytic Asp, is essential for both activities. Since forefinger loop is needed for both rRNA and tRNA Ψ synthase activities of RluA, but only for tRNA Ψ54 activity of Pus10, archaeal Pus10 proteins must use a different mechanism of recognition for Ψ55 activity. We propose that archaeal Pus10 uses two distinct mechanisms for substrate uridine recognition and binding. However, since we did not observe any mutation that affected only Ψ55 activity, both mechanisms for archaeal Pus10 activities must share some common features.  相似文献   
4.
5.
6.
Toll-like receptor 4 (TLR4) is a member of Toll-Like Receptors (TLRs) family that serves as a receptor for bacterial lipopolysaccharide (LPS). TLR4 alone cannot recognize LPS without aid of co-receptor myeloid differentiation factor-2 (MD-2). Binding of LPS with TLR4 forms a LPS?TLR4?MD-2 complex and directs downstream signaling for activation of immune response, inflammation and NF-κB activation. Activation of TLR4 signaling is associated with various pathophysiological consequences. Therefore, targeting protein–protein interaction (PPI) in TLR4?MD-2 complex formation could be an attractive therapeutic approach for targeting inflammatory disorders. The aim of present study was directed to identify small molecule PPI inhibitors (SMPPIIs) using pharmacophore mapping-based approach of computational drug discovery. Here, we had retrieved the information about the hot spot residues and their pharmacophoric features at both primary (TLR4?MD-2) and dimerization (MD-2?TLR4*) protein–protein interaction interfaces in TLR4?MD-2 homo-dimer complex using in silico methods. Promising candidates were identified after virtual screening, which may restrict TLR4?MD-2 protein–protein interaction. In silico off-target profiling over the virtually screened compounds revealed other possible molecular targets. Two of the virtually screened compounds (C11 and C15) were predicted to have an inhibitory concentration in μM range after HYDE assessment. Molecular dynamics simulation study performed for these two compounds in complex with target protein confirms the stability of the complex. After virtual high throughput screening we found selective hTLR4?MD-2 inhibitors, which may have therapeutic potential to target chronic inflammatory diseases.  相似文献   
7.
8.
A series of acyclic deoxy carbohydrate derivatives from easily available carbohydrate enals 1, 2, 3 or 5 were prepared involving the Baylis-Hillman reaction. These newly formed carbohydrate based Baylis-Hillman adducts and their amino derivatives were evaluated for their antimycobacterial activity against Mycobacterium tuberculosis H(37)R(v). Among the compounds evaluated for their antimycobacterial activity, compound (10) showed the desired activity in the range of 3.125 microg/mL.  相似文献   
9.
10.
The omega-3 polyunsaturated fatty acid, docosahexaenoic acid (DHA, 22:6n-3) has been previously shown to facilitate some of the vital functions of astrocytes. Since some dietary oils contain alpha-linolenic acid (ALA, 18:3n-3), which is a precursor of DHA, we examined their effect on astrocyte development. Fatty acids (FAs) were isolated from commonly used oils and their compositions were determined by GLC. FAs from three oils, viz. coconut, mustard and linseed were studied for their effect on astrocyte morphology. Parallel studies were conducted with FAs from the same oils after heating for 72 h. Unlike coconut oil, FAs from mustard and linseed, both heated and raw, caused significant morphogenesis of astrocytes in culture. ss-AR binding was also substantially increased in astrocytes treated with FAs from raw mustard and linseed oils as compared to astrocytes grown in normal medium. The expression profile of the isoforms of GFAP showed that astrocyte maturation by FAs of mustard and linseed oil was associated with appearance of acidic variants of GFAP and disappearance of some neutral isoforms similar to that observed in cultures grown in serum containing medium or in the presence of DHA. Taken together, the study highlights the contribution of specific dietary oils in facilitating astrocyte development that can have potential impact on human health.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号