首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1122篇
  免费   54篇
  2022年   8篇
  2021年   20篇
  2020年   11篇
  2019年   20篇
  2018年   17篇
  2017年   20篇
  2016年   26篇
  2015年   43篇
  2014年   39篇
  2013年   84篇
  2012年   109篇
  2011年   99篇
  2010年   65篇
  2009年   43篇
  2008年   79篇
  2007年   90篇
  2006年   78篇
  2005年   64篇
  2004年   40篇
  2003年   51篇
  2002年   53篇
  2001年   12篇
  2000年   4篇
  1999年   5篇
  1998年   8篇
  1997年   7篇
  1996年   7篇
  1995年   6篇
  1994年   8篇
  1993年   7篇
  1992年   5篇
  1991年   2篇
  1990年   3篇
  1989年   5篇
  1988年   3篇
  1986年   2篇
  1985年   3篇
  1984年   5篇
  1982年   3篇
  1981年   2篇
  1979年   4篇
  1978年   1篇
  1975年   1篇
  1974年   4篇
  1973年   2篇
  1965年   1篇
  1963年   1篇
  1962年   1篇
  1956年   1篇
  1954年   1篇
排序方式: 共有1176条查询结果,搜索用时 15 毫秒
1.
2.
3.
4.
Two newly established inbred strains derived from Mus musculus musculus, designated PWD/Ph (F29) and PWK/Ph (F33), were examined for their alleles at 37 biochemical loci located on 12 different chromosomes. The allelic pattern showed characteristic differences from those observed in common inbred strains. The genetic distance D between PWK/Ph and PWD/Ph was 0.027, whereas the corresponding values for the genetic distances between PWK/Ph and C57BL/6J, DBA/2J, BALB/cJ and SWR/J were 0.777, 0.721, 0.721 and 0.838 respectively. New allozymes are described as being controlled by the loci Es-23, Pre-2 and Tam-1. The genetic relationship to M.m.molossinus is indicated by identical alleles at six other loci (Es-2, Es-9, Es-10, Es-11, Es-18 and Es-22).  相似文献   
5.
Centromeric heterochromatin polymorphism in the house mouse   总被引:4,自引:0,他引:4  
J. Forejt 《Chromosoma》1973,43(2):187-201
Polymorphism of Giemsa-specific centromeric heterochromatin (C.H.) has been described in the laboratory and wild mice. All examined wild mice and inbred mouse strains display some chromosomes with considerably reduced or enlarged C.H. regions. The quantity of C.H. could be an inherent property of a chromosome as inferred from (a) the finding of the identical C.H. pattern within inbred strains, (b) the finding that two genetically related inbred strains, C3H and CBA, separated from each other for more than 150 generations, possess the same two chromosome pairs with tiny C.H. marker regions. These chromosomes were identified as No. 1 (l.g. XIII) and No. 14 (l.g.III) by means of T(14;15)6Ca translocation, and C- and G-band analysis. The neutrality of C.H. polymorphism in murine genome is inferred from the heterozygosity for the C.H. variants found in all studied wild mice. The possible relationship of C.H. polymorphism to the centromere interference phenomenon is hypothesized.  相似文献   
6.
7.
Four types of differently phosphorylated hylakoids isolated from field grown spinach ( Spinacia oleracea L.) were tested for the sensitivity of photosystem II (PSII) to photoinactivation. Phosphorylation of light-harvesting II complexes (LHCII) protected PSII electron transfer from photoinhibitory damage, while the phosphorylation of the PSII core polypeptides slightly accelerated the decline of electron transfer during high irradiance treatment. Dephosphorylation of the CP43 apoprotein and PsbH protein by an alkaline phosphatase resulted in an extreme sensitivity of the thylakoids to strong illumination. The PSII photoinactivation of thylakoids with the impaired oxygen-evolving complex was found to be independent of phosphorylation.
The thylakoids of the thermophilic cyanobacterium Synechococcus elongates were used in order to compare the plants with an organism where LHCII complexes are missing and the PSII core proteins are not phosphorylated.  相似文献   
8.
Most flowering plant species are hermaphroditic, but a small number of species in most plant families are unisexual (i.e., an individ-ual will produce only male or female gametes). Because species with unisexual flowers have evolved repeatedly from hermaphroditic progenitors, the mechanisms controlling sex determination in flowering plants are extremely diverse. Sex is most strongly determined by genotype in all species but the mechanisms range from a single controlling locus to sex chromosomes bearing several linked locirequired for sex determination. Plant hormones also influence sex expression with variable effects from species to species. Here, we review the genetic control of sex determination from a number of plant species to illustrate the variety of extant mechanisms. We emphasize species that are now used as models to investigate the molecular biology of sex determination. We also present our own investigations of the structure of plant sex chromosomes of white campion (Silene latifolia - Melan-drium album). The cytogenetic basis of sex determination in white campion is similar to mammals in that it has a male-specific Y-chromosome that carries dominant male determining genes. If one copy of this chromosome is in the genome, the plant is male. Otherwise it is female. Like mammalian Y-chromosomes, the white campion Y-chromosome is rich in repetitive DNA. We isolated repetitive sequences from microdissected Y-chromosomes of white campion to study the distribution of homologous repeated sequences on the Y-chromosome and the other chromosomes. We found the Y to be especially rich in repetitive sequences that were generally dispersed over all the white campion chromosomes. Despite its repetitive character, the Y-chromosome is mainly euchromatic. This may be due to the relatively recent evolution of the white campion sex chromosomes compared to the sex chromosomes of animals. © 1994 Wiley-Liss, Inc.  相似文献   
9.
10.
In the differentiating eubacterium Streptomyces coelicolor , nutritional imbalances activate a developmental programme which involves the heat-shock stress regulon. In liquid batch cultures, the growth curve could be separated into four components: rapid growth 1 (RG1), transition (T), rapid growth 2 (RG2) and stationary (S). Patterns of gene expression in cultures subjected to heat shock in various phases were recorded on two-dimensional gels and analysed using advanced statistical methods. The responses of all heat-shock proteins (HSPs) were highly dependent upon the growth phase, thus demonstrating that the four phases of growth were physiologically distinct. For many HSPs, the levels of thermal induction attained were closely related to growth stage-determined levels of synthesis before heat shock, thus supporting the idea that developmental and thermal induction of this stress regulon have common control elements. Cluster analysis identified five groups of HSPs displaying similar kinetics of heat and developmentally induced synthesis, probably reflecting the influence of major regulatory systems. Methods introduced here to analyse the response of groups of genes to multiple simultaneous stimuli should find broad applications to studies of other prokaryotic and eukaryotic regulons.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号