首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110篇
  免费   6篇
  2019年   2篇
  2016年   4篇
  2015年   2篇
  2013年   5篇
  2012年   6篇
  2011年   3篇
  2008年   5篇
  2007年   3篇
  2006年   1篇
  2004年   4篇
  2003年   1篇
  2002年   3篇
  2001年   5篇
  2000年   2篇
  1999年   4篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1979年   1篇
  1976年   1篇
  1975年   1篇
  1964年   1篇
  1963年   4篇
  1962年   1篇
  1961年   3篇
  1959年   3篇
  1958年   3篇
  1956年   3篇
  1955年   2篇
  1954年   1篇
  1950年   1篇
  1949年   1篇
  1948年   1篇
  1940年   1篇
  1939年   2篇
  1938年   1篇
  1937年   1篇
  1923年   2篇
  1918年   4篇
  1910年   2篇
  1902年   2篇
  1888年   1篇
排序方式: 共有116条查询结果,搜索用时 15 毫秒
1.
Besprechungen     
Ohne Zusammenfassung  相似文献   
2.
Axon pathfinding in the neuroepithelium of embryonic brain is dependent on a variety of short and long range guidance cues. Heparan sulfate proteoglycans such as syndecans act as modulators of these cues and their importance in neural development is highlighted by their phylogenetic conservation. In Drosophilia, a single syndecan is present on the surface of axon growth cones and is required for chemorepulsive signalling during midline crossing. Understanding the role of syndecans in the vertebrate nervous system is challenging given that there are four homologous genes, syndecans 1–4. We show here that syndecans 2–4 are expressed in the zebrafish embryonic brain during the major period of axon growth. These genes show differing expression patterns in the brain which provides putative insights into their functional specificity.  相似文献   
3.
Elotuzumab is a monoclonal antibody in development for multiple myeloma (MM) that targets CS1, a cell surface glycoprotein expressed on MM cells. In preclinical models, elotuzumab exerts anti-MM efficacy via natural killer (NK)-cell-mediated antibody-dependent cellular cytotoxicity (ADCC). CS1 is also expressed at lower levels on NK cells where it acts as an activating receptor. We hypothesized that elotuzumab may have additional mechanisms of action via ligation of CS1 on NK cells that complement ADCC activity. Herein, we show that elotuzumab appears to induce activation of NK cells by binding to NK cell CS1 which promotes cytotoxicity against CS1(+) MM cells but not against autologous CS1(+) NK cells. Elotuzumab may also promote CS1–CS1 interactions between NK cells and CS1(+) target cells to enhance cytotoxicity in a manner independent of ADCC. NK cell activation appears dependent on differential expression of the signaling intermediary EAT-2 which is present in NK cells but absent in primary, human MM cells. Taken together, these data suggest elotuzumab may enhance NK cell function directly and confer anti-MM efficacy by means beyond ADCC alone.  相似文献   
4.

Background

Combinatorial complexity is a central problem when modeling biochemical reaction networks, since the association of a few components can give rise to a large variation of protein complexes. Available classical modeling approaches are often insufficient for the analysis of very large and complex networks in detail. Recently, we developed a new rule-based modeling approach that facilitates the analysis of spatial and combinatorially complex problems. Here, we explore for the first time how this approach can be applied to a specific biological system, the human kinetochore, which is a multi-protein complex involving over 100 proteins.

Results

Applying our freely available SRSim software to a large data set on kinetochore proteins in human cells, we construct a spatial rule-based simulation model of the human inner kinetochore. The model generates an estimation of the probability distribution of the inner kinetochore 3D architecture and we show how to analyze this distribution using information theory. In our model, the formation of a bridge between CenpA and an H3 containing nucleosome only occurs efficiently for higher protein concentration realized during S-phase but may be not in G1. Above a certain nucleosome distance the protein bridge barely formed pointing towards the importance of chromatin structure for kinetochore complex formation. We define a metric for the distance between structures that allow us to identify structural clusters. Using this modeling technique, we explore different hypothetical chromatin layouts.

Conclusions

Applying a rule-based network analysis to the spatial kinetochore complex geometry allowed us to integrate experimental data on kinetochore proteins, suggesting a 3D model of the human inner kinetochore architecture that is governed by a combinatorial algebraic reaction network. This reaction network can serve as bridge between multiple scales of modeling. Our approach can be applied to other systems beyond kinetochores.  相似文献   
5.
Pantoea ananatis is a Gram‐negative bacterium first recognized in 1928 as the causative agent of pineapple rot in the Philippines. Since then various strains of the organism have been implicated in the devastation of agriculturally important crops. Some strains, however, have been shown to function as non‐pathogenic plant growth promoting organisms. To date, the factors that determine pathogenicity or lack thereof between the various strains are not well understood. All P. ananatis strains contain lipopolysaccharides, which differ with respect to the identities of their associated sugars. Given our research interest on the presence of the unusual sugar, 4‐formamido‐4,6‐dideoxy‐d ‐glucose, found on the lipopolysaccharides of Campylobacter jejuni and Francisella tularensis, we were curious as to whether other bacteria have the appropriate biosynthetic machinery to produce these unique carbohydrates. Four enzymes are typically required for their biosynthesis: a thymidylyltransferase, a 4,6‐dehydratase, an aminotransferase, and an N‐formyltransferase. Here, we report that the gene SAMN03097714_1080 from the P. ananatis strain NFR11 does, indeed, encode for an N‐formyltransferase, hereafter referred to as PA1080c. Our kinetic analysis demonstrates that PA1080c displays classical Michaelis–Menten kinetics with dTDP‐4‐amino‐4,6‐dideoxy‐d ‐glucose as the substrate and N10‐formyltetrahydrofolate as the carbon source. In addition, the X‐ray structure of PA1080c, determined to 1.7 Å resolution, shows that the enzyme adopts the molecular architecture observed for other sugar N‐formyltransferases. Analysis of the P. ananatis NFR11 genome suggests that the three other enzymes necessary for N‐formylated sugar biosynthesis are also present. Intriguingly, those strains of P. ananatis that are non‐pathogenic apparently do not contain these genes.  相似文献   
6.
This study coupled a landscape-scale metagenomic survey of denitrification gene abundance in soils with in situ denitrification measurements to show how environmental factors shape distinct denitrification communities that exhibit varying denitrification activity. Across a hydrologic gradient, the distribution of total denitrification genes (nap/nar + nirK/nirS + cNor/qNor + nosZ) inferred from metagenomic read abundance exhibited no consistent patterns. However, when genes were considered independently, nirS, cNor and nosZ read abundance was positively associated with areas of higher soil moisture, higher nitrate and higher annual denitrification rates, whereas nirK and qNor read abundance was negatively associated with these factors. These results suggest that environmental conditions, in particular soil moisture and nitrate, select for distinct denitrification communities that are characterized by differential abundance of genes encoding apparently functionally redundant proteins. In contrast, taxonomic analysis did not identify notable variability in denitrifying community composition across sites. While the capacity to denitrify was ubiquitous across sites, denitrification genes with higher energetic costs, such as nirS and cNor, appear to confer a selective advantage in microbial communities experiencing more frequent soil saturation and greater nitrate inputs. This study suggests metagenomics can help identify denitrification hotspots that could be protected or enhanced to treat non-point source nitrogen pollution.  相似文献   
7.
Generation of macrophages from early T progenitors in vitro   总被引:3,自引:0,他引:3  
Early T progenitors in the thymus have been reported to have the capacity to develop into B cells, thymic dendritic cells, and NK cells. Here we describe conditions that induce early T progenitors to develop into macrophages. Initially, we observed that early T progenitors could be induced to develop into macrophages by cytokines produced from a thymic stromal cell line, TFGD, and later we found that the cytokine mixture of M-CSF plus IL-6 plus IL-7 also induced macrophage differentiation from pro-T cells. M-CSF by itself was unable to induce macrophage differentiation from early T progenitors. To correlate this observation with the developmental potential of early T progenitors, mouse embryonic thymocytes were sorted into four populations, pro-T1 to pro-T4, based on the expression of CD44 and CD25, and then cultured with TFGD culture supernatant. We found that pro-T1 and pro-T2 cells, but not pro-T3 and pro-T4 cells, generate macrophages. Limiting dilution analysis of the differentiation capability of sorted pro-T2 cells also confirmed that pro-T2 cells could generate macrophages. These results suggest that T cells and thymic macrophages could originate from a common intrathymic precursor.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号