首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   603篇
  免费   41篇
  2024年   2篇
  2023年   8篇
  2022年   9篇
  2021年   23篇
  2020年   6篇
  2019年   5篇
  2018年   7篇
  2017年   12篇
  2016年   13篇
  2015年   37篇
  2014年   39篇
  2013年   48篇
  2012年   59篇
  2011年   46篇
  2010年   41篇
  2009年   25篇
  2008年   34篇
  2007年   35篇
  2006年   29篇
  2005年   29篇
  2004年   22篇
  2003年   18篇
  2002年   25篇
  2001年   6篇
  2000年   1篇
  1999年   3篇
  1998年   5篇
  1997年   4篇
  1996年   3篇
  1995年   4篇
  1994年   3篇
  1993年   4篇
  1992年   4篇
  1991年   2篇
  1990年   2篇
  1989年   6篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   4篇
  1984年   4篇
  1983年   4篇
  1982年   6篇
  1979年   2篇
  1962年   1篇
排序方式: 共有644条查询结果,搜索用时 15 毫秒
1.
The effect of HCO 3 - on ion absorption by young corn roots was studied in conditions allowing the independent control of both the pH of uptake solution and the CO2 partial pressure in air bubbled through the solution. The surface pH shift in the vicinity of the outer surface of the plasmalemma induced by active H+ excretion was estimated using the initial uptake rate of acetic acid as a pH probe (Sentenac and Grignon (1987) Plant Physiol. 84, 1367). Acetic acid and orthophosphate uptake rates and NO 3 - accumulation were slowed down, while 86Rb+ uptake and K+ accumulation rates were increased by HCO 3 - . These effects were similar to those induced by 4-(2-hydroxyethyl)-1-piperazineethane sulfonic acid/2-amino-2-(hydroxymethyl)-1,3-propanediol (Hepes-Tris). They were more pronounced when the H+ excretion was strong, were rapidly reversible and were not additive to those of Hepes-Tris. The hypothesis is advanced that the buffering system CO2/H2CO3/HCO 3 - accelerated the diffusion of equivalent H+ inside the cell wall towards the medium. This attenuated the surface pH shift in the vicinity the plasma membrane and affected the coupling between the proton pump and cotransport systems.Abbreviations FW fresh weight - Hepes 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid - Jaa acetic acid influx - JK + K+ influx - JPi orthophosphate influx - Mes 2-(N-morpholino)ethanesulfonic acid - pCO2 CO2 partial pressure - Tris 2-amino-2-(hydroxymethyl)-1,3-propanediol  相似文献   
2.
3.
Genomic DNA of 191 strains of the family Pseudomonadaceae, including 187 strains of the genus Xanthomonas, was cleaved by EcoRI endonuclease. After hybridization of Southern transfer blots with 2-acetylamino-fluorene-labelled Escherichia coli 16+23S rRNA probe, 27 different patterns were obtained. The strains are clearly distinguishable at the genus, species, and pathovar levels. The variability of the rRNA gene restriction patterns was determined for four pathovars of Xanthomonas campestris species. The 16 strains of X. campestris pv. begoniae analyzed gave only one pattern. The variability of rRNA gene restriction patterns of X. campestris pv. manihotis strains could be related to ecotypes. In contrast, the variability of patterns observed for X. campestris pv. malvacearum was not correlated with pathogenicity or with the geographical origins of the strains. The highest degree of variability of DNA fingerprints was observed within X. campestris pv. dieffenbachiae, which is pathogenic to several hosts of the Araceae family. In this case, variability was related to both host plant and pathogenicity.  相似文献   
4.

Aim

Coastal fishes have a fundamental role in marine ecosystem functioning and contributions to people, but face increasing threats due to climate change, habitat degradation and overexploitation. The extent to which human pressures are impacting coastal fish biodiversity in comparison with geographic and environmental factors at large spatial scale is still under scrutiny. Here, we took advantage of environmental DNA (eDNA) metabarcoding to investigate the relationship between fish biodiversity, including taxonomic and genetic components, and environmental but also socio-economic factors.

Location

Tropical, temperate and polar coastal areas.

Time period

Present day.

Major taxa studied

Marine fishes.

Methods

We analysed fish eDNA in 263 stations (samples) in 68 sites distributed across polar, temperate and tropical regions. We modelled the effect of environmental, geographic and socio-economic factors on α- and β-diversity. We then computed the partial effect of each factor on several fish biodiversity components using taxonomic molecular units (MOTU) and genetic sequences. We also investigated the relationship between fish genetic α- and β-diversity measured from our barcodes, and phylogenetic but also functional diversity.

Results

We show that fish eDNA MOTU and sequence α- and β-diversity have the strongest correlation with environmental factors on coastal ecosystems worldwide. However, our models also reveal a negative correlation between biodiversity and human dependence on marine ecosystems. In areas with high dependence, diversity of all fish, cryptobenthic fish and large fish MOTUs declined steeply. Finally, we show that a sequence diversity index, accounting for genetic distance between pairs of MOTUs, within and between communities, is a reliable proxy of phylogenetic and functional diversity.

Main conclusions

Together, our results demonstrate that short eDNA sequences can be used to assess climate and direct human impacts on marine biodiversity at large scale in the Anthropocene and can further be extended to investigate biodiversity in its phylogenetic and functional dimensions.  相似文献   
5.
One of the four ribosomal RNA operons (rrnA) from theAgrobacterium vitis vitopine strain S4 was sequenced.rrnA is most closely related to therrn operons ofBradyrhizobium japonicum andRhodobacter sphaeroides and carries an fMet-tRNA gene downstream of its 5S gene, as in the case ofR. sphaeroides. The 16S rRNA sequence of S4 differs from theA. vitis K309 type strain sequence by only one nucleotide, in spite of the fact that S4 and K309 have very different Ti plasmids. The predicted secondary structure of the S4 23S rRNA shows several features that are specific for the alpha proteobacteria, and an unusual branched structure in the universal B8 stem. The 3′ ends of the three otherrrn copies of S4 were also cloned and sequenced. Sequence comparison delimits the 3′ ends of the four repeats and defines two groups:rrnA/rrnB andrrnC/rrnD.  相似文献   
6.
7.
The titration by ferrocyanide and the localization of the oxidizing equivalents of lactoperoxidase "compound II" were studied as a function of pH. It was demonstrated that 1) whatever the pH, the structure of lactoperoxidase "compound II" was compatible with a Fe IV R degree state, 2) at acidic pH, ferrocyanide preferentially reduced the oxidizing equivalent localized on the heme iron to give an Fe III R degree compound, 3) at pH 4.2 only the Fe III R degree form was obtained after reduction of lactoperoxidase "compound II" with one mole of ferrocyanide and whereas at pH greater than 4.2, a mixture of both Fe III R degree and Fe IV R forms was present, 4) lowering the pH from 7.2 to 4.0 induced a transition of Fe IV R state to Fe III R degree state, but increasing the pH from 4.0 to 7.2 did not permit the formation of Fe IV R compound from Fe III R degree compound.  相似文献   
8.
We present the sequence of the 5' terminal 585 nucleotides of mouse 28S rRNA as inferred from the DNA sequence of a cloned gene fragment. The comparison of mouse 28S rRNA sequence with its yeast homolog, the only known complete sequence of eukaryotic nucleus-encoded large rRNA (see ref. 1, 2) reveals the strong conservation of two large stretches which are interspersed with completely divergent sequences. These two blocks of homology span the two segments which have been recently proposed to participate directly in the 5.8S-large rRNA complex in yeast (see ref. 1) through base-pairing with both termini of 5.8S rRNA. The validity of the proposed structural model for 5.8S-28S rRNA complex in eukaryotes is strongly supported by comparative analysis of mouse and yeast sequences: despite a number of mutations in 28S and 5.8S rRNA sequences in interacting regions, the secondary structure that can be proposed for mouse complex is perfectly identical with yeast's, with all the 41 base-pairings between the two molecules maintained through 11 pairs of compensatory base changes. The other regions of the mouse 28S rRNA 5'terminal domain, which have extensively diverged in primary sequence, can nevertheless be folded in a secondary structure pattern highly reminiscent of their yeast' homolog. A minor revision is proposed for mouse 5.8S rRNA sequence.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号