首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   7篇
  2018年   2篇
  2017年   2篇
  2016年   2篇
  2015年   1篇
  2014年   3篇
  2013年   3篇
  2012年   2篇
  2011年   5篇
  2009年   1篇
  2008年   1篇
  2007年   3篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1995年   2篇
  1985年   1篇
  1976年   1篇
排序方式: 共有32条查询结果,搜索用时 15 毫秒
1.
Individuals that are exposed to malaria eventually develop immunity to the disease with one possible mechanism being the gradual acquisition of antibodies to the range of parasite variant surface antigens in their local area. Major antibody targets include the large and highly polymorphic Plasmodium falciparum Erythrocyte Membrane Protein 1 (PfEMP1) family of proteins. Here, we use a protein microarray containing 123 recombinant PfEMP1-DBLα domains (VAR) from Papua New Guinea to seroprofile 38 nonimmune children (<4 years) and 29 hyperimmune adults (≥15 years) from the same local area. The overall magnitude, prevalence and breadth of antibody response to VAR was limited at <2 years and 2-2.9 years, peaked at 3-4 years and decreased for adults compared with the oldest children. An increasing proportion of individuals recognized large numbers of VAR proteins (>20) with age, consistent with the breadth of response stabilizing with age. In addition, the antibody response was limited in uninfected children compared with infected children but was similar in adults irrespective of infection status. Analysis of the variant-specific response confirmed that the antibody signature expands with age and infection. This also revealed that the antibody signatures of the youngest children overlapped substantially, suggesting that they are exposed to the same subset of PfEMP1 variants. VAR proteins were either seroprevalent from early in life, (<3 years), from later in childhood (≥3 years) or rarely recognized. Group 2 VAR proteins (Cys2/MFK-REY+) were serodominant in infants (<1-year-old) and all other sequence subgroups became more seroprevalent with age. The results confirm that the anti-PfEMP1-DBLα antibody responses increase in magnitude and prevalence with age and further demonstrate that they increase in stability and complexity. The protein microarray approach provides a unique platform to rapidly profile variant-specific antibodies to malaria and suggests novel insights into the acquisition of immunity to malaria.  相似文献   
2.
Routine serodiagnosis of herpes simplex virus (HSV) infections is currently performed using recombinant glycoprotein G (gG) antigens from herpes simplex virus 1 (HSV-1) and HSV-2. This is a single-antigen test and has only one diagnostic application. Relatively little is known about HSV antigenicity at the proteome-wide level, and the full potential of mining the antibody repertoire to identify antigens with other useful diagnostic properties and candidate vaccine antigens is yet to be realized. To this end we produced HSV-1 and -2 proteome microarrays in Escherichia coli and probed them against a panel of sera from patients serotyped using commercial gG-1 and gG-2 (gGs for HSV-1 and -2, respectively) enzyme-linked immunosorbent assays. We identified many reactive antigens in both HSV-1 and -2, some of which were type specific (i.e., recognized by HSV-1- or HSV-2-positive donors only) and others of which were nonspecific or cross-reactive (i.e., recognized by both HSV-1- and HSV-2-positive donors). Both membrane and nonmembrane virion proteins were antigenic, although type-specific antigens were enriched for membrane proteins, despite being expressed in E. coli.  相似文献   
3.
4.

Background

Leptospirosis is a widespread zoonotic disease worldwide. The lack of an adequate laboratory test is a major barrier for diagnosis, especially during the early stages of illness, when antibiotic therapy is most effective. Therefore, there is a critical need for an efficient diagnostic test for this life threatening disease.

Methodology

In order to identify new targets that could be used as diagnostic makers for leptopirosis, we constructed a protein microarray chip comprising 61% of Leptospira interrogans proteome and investigated the IgG response from 274 individuals, including 80 acute-phase, 80 convalescent-phase patients and 114 healthy control subjects from regions with endemic, high endemic, and no endemic transmission of leptospirosis. A nitrocellulose line blot assay was performed to validate the accuracy of the protein microarray results.

Principal findings

We found 16 antigens that can discriminate between acute cases and healthy individuals from a region with high endemic transmission of leptospirosis, and 18 antigens that distinguish convalescent cases. Some of the antigens identified in this study, such as LipL32, the non-identical domains of the Lig proteins, GroEL, and Loa22 are already known to be recognized by sera from human patients, thus serving as proof-of-concept for the serodiagnostic antigen discovery approach. Several novel antigens were identified, including the hypothetical protein LIC10215 which showed good sensitivity and specificity rates for both acute- and convalescent-phase patients.

Conclusions

Our study is the first large-scale evaluation of immunodominant antigens associated with naturally acquired leptospiral infection, and novel as well as known serodiagnostic leptospiral antigens that are recognized by antibodies in the sera of leptospirosis cases were identified. The novel antigens identified here may have potential use in both the development of new tests and the improvement of currently available assays for diagnosing this neglected tropical disease. Further research is needed to assess the utility of these antigens in more deployable diagnostic platforms.  相似文献   
5.
The development of vaccines against malaria and serodiagnostic tests for detecting recent exposure requires tools for antigen discovery and suitable animal models. The protein microarray is a high‐throughput, sample sparing technique, with applications in infectious disease research, clinical diagnostics, epidemiology, and vaccine development. We recently demonstrated Qdot‐based indirect immunofluorescence together with portable optical imager ArrayCAM using single isotype detection could replicate data using the conventional laser confocal scanner system. We developed a multiplexing protocol for simultaneous detection of IgG, IgA, and IgM and compared samples from a controlled human malaria infection model with those from controlled malaria infections of Aotus nancymaae, a widely used non‐human primate model of human malaria. IgG profiles showed the highest concordance in number of reactive antigens; thus, of the 139 antigens recognized by human IgG antibody, 111 were also recognized by Aotus monkeys. Interestingly, IgA profiles were largely non‐overlapping. Finally, on the path toward wider deployment of the portable platform, we show excellent correlations between array data obtained in five independent laboratories around the United States using the multiplexing protocol (R2: 0.60–0.92). This study supports the use of this platform for wider deployment, particularly in endemic areas where such a tool will have the greatest impact on global human health.  相似文献   
6.
7.
8.

Background

Borrelia burgdorferi sensu lato and Anaplasma phagocytophilum have been considered as pathogens in animals and humans. The role of wild cervids in the epidemiology is not clear. We analyzed questing Ixodes ricinus ticks collected in spring for these pathogens from sites with high (Fjelløyvær and Strøm) and low density (Tjore, Hinnebu and Jomfruland) of wild cervids to study the spread of the pathogens in questing ticks.

Methods

For detection of Anaplasma phagocytophilum a 77-bp fragment in the msp 2 gene was used. Detection of Borrelia burgdorferi sensu lato was performed using the FL6 and FL7 primers according to sequences of conserved regions of the fla gene. The Osp A gene located on the linear 49-kb plasmid was used as target in multiplex PCR for genotyping. Genospecies-specific primers were used in the PCR for Borrelia burgdorferi sensu stricto, B. afzelii and B. garinii.

Results

Infection rates with Borrelia spp. were significantly lower at Fjelløyvær and Strøm compared to Tjore and Hinnebu; Fjelløyvær vs. Tjore (χ2 = 20.27, p < 0.0001); Fjelløyvær vs. Hinnebu (χ2 = 24.04, p < 0.0001); Strøm vs. Tjore (χ2 = 11.47, p = 0.0007) and Strøm vs. Hinnebu (χ2 = 16.63, p < 0.0001). The Borrelia genospecies were dominated by. B. afzelii (82%) followed by B. garinii (9.7%) and B. burgdorferi sensu stricto (6.9%). B. burgdorferi s.s. was only found on the island of Jomfruland. The infection rate of Anaplasma phagocytophilum showed the following figures; Fjelløyvær vs Hinnebu (χ2 = 16.27, p = 0.0001); Strøm vs. Tjore (χ2 = 13.16, p = 0.0003); Strøm vs. Hinnebu (χ2 = 34.71, p < 0.0001); Fjelløyvær vs. Tjore (χ2 = 3.19, p = 0.0742) and Fjelløyvær vs. Støm (χ2 = 5.06, p = 0.0245). Wild cervids may serve as a reservoir for A. phagocytophilum. Jomfruland, with no wild cervids but high levels of migrating birds and rodents, harboured both B. burgdorferi s.l. and A. phagocytophilum in questing I. ricinus ticks. Birds and rodents may play an important role in maintaining the pathogens on Jomfruland.

Conclusion

The high abundance of roe deer and red deer on the Norwegian islands of Fjelløyvær and Strøm may reduce the infection rate of Borrelia burgdorferi sensu lato in host seeking Ixodes ricinus, in contrast to mainland sites at Hinnebu and Tjore with moderate abundance of wild cervids. The infection rate of Anaplasma phagocytophilum showed the opposite result with a high prevalence in questing ticks in localities with a high density of wild cervids compared to localities with lower density.
  相似文献   
9.
The microbial insecticide Bacillus thuringiensis (Bt) produces Cry toxins, proteins that bind to the brush border membranes of gut epithelial cells of insects that ingest it, disrupting the integrity of the membranes, and leading to cell lysis and insect death. In gypsy moth, Lymantria dispar, two toxin-binding molecules for the Cry1A class of Bt toxins have been identified: an aminopeptidase N (APN-1) and a 270 kDa anionic glycoconjugate (BTR-270). Studies have shown that APN-1 has a relatively weak affinity and a very narrow specificity to Cry1Ac, the only Cry1A toxin that it binds. In contrast, BTR-270 binds all toxins that are active against L. dispar larvae, and the affinities for these toxins to BTR-270 correlate positively with their respective toxicities. In this study, an immunohistochemical approach was coupled with fluorescence microscopy to localize APN-1 and BTR-270 in paraffin embedded midgut sections of L. dispar larvae. The distribution of cadherin and alkaline phosphatase in the gut tissue was also examined. A strong reaction indicative of polyanionic material was detected with alcian blue staining over the entire epithelial brush border, suggesting the presence of acidic glycoconjugates in the microvillar matrix. The Cry1A toxin-binding sites were confined to the apical surface of the gut epithelial cells with intense labeling of the apical tips of the microvilli. APN-1, BTR-270, and alkaline phosphatase were found to be present exclusively along the brush border microvilli along the entire gut epithelium. In contrast, cadherin, detected only in older gypsy moth larvae, was present both in the apical brush border and in the basement membrane anchoring the midgut epithelial cells. The topographical relationship between the Bt Cry toxin-binding molecules BTR-270 and APN-1 and the Cry1A toxin-binding sites that were confined to the apical brush border of the midgut cells is consistent with findings implicating their involvement in the mechanism of the action of Bt Cry toxins.  相似文献   
10.
Schistosomiasis is a neglected tropical disease that is responsible for almost 300,000 deaths annually. Mass drug administration (MDA) is used worldwide for the control of schistosomiasis, but chemotherapy fails to prevent reinfection with schistosomes, so MDA alone is not sufficient to eliminate the disease, and a prophylactic vaccine is required. Herein, we take advantage of recent advances in systems biology and longitudinal studies in schistosomiasis endemic areas in Brazil to pilot an immunomics approach to the discovery of schistosomiasis vaccine antigens. We selected mostly surface-derived proteins, produced them using an in vitro rapid translation system and then printed them to generate the first protein microarray for a multi-cellular pathogen. Using well-established Brazilian cohorts of putatively resistant (PR) and chronically infected (CI) individuals stratified by the intensity of their S. mansoni infection, we probed arrays for IgG subclass and IgE responses to these antigens to detect antibody signatures that were reflective of protective vs. non-protective immune responses. Moreover, probing for IgE responses allowed us to identify antigens that might induce potentially deleterious hypersensitivity responses if used as subunit vaccines in endemic populations. Using multi-dimensional cluster analysis we showed that PR individuals mounted a distinct and robust IgG1 response to a small set of newly discovered and well-characterized surface (tegument) antigens in contrast to CI individuals who mounted strong IgE and IgG4 responses to many antigens. Herein, we show the utility of a vaccinomics approach that profiles antibody responses of resistant individuals in a high-throughput multiplex approach for the identification of several potentially protective and safe schistosomiasis vaccine antigens.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号