首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82篇
  免费   2篇
  国内免费   1篇
  85篇
  2022年   1篇
  2021年   1篇
  2020年   4篇
  2019年   3篇
  2018年   5篇
  2017年   1篇
  2016年   2篇
  2015年   3篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2011年   7篇
  2010年   2篇
  2009年   14篇
  2008年   12篇
  2007年   11篇
  2006年   2篇
  2005年   1篇
  2004年   5篇
  2003年   1篇
  2002年   1篇
  1998年   1篇
  1988年   1篇
  1984年   1篇
  1975年   1篇
排序方式: 共有85条查询结果,搜索用时 0 毫秒
1.
Plutella xylostella is an important pest of cruciferous crops worldwide. However, information regarding the age‐stage, two‐sex life parameters of P. xylostella, which is vital for designing more effective control methods, is currently lacking. The present study reports age‐stage, two‐sex life table parameters for P. xylostella on napa cabbage (Brassica oleracea var. napa), white cabbage (B. oleracea var. capitata), and cauliflower (B. oleracea var. botrytis) under laboratory conditions at 25 ± 2°C, 50–60% relative humidity, and a 16‐h light : 8‐h dark photoperiod. The time for development from an egg to a male or female adult P. xylostella on white cabbage (mean [± SE] 41.15 ± 0.54 and 39.50 ± 0.54 days, respectively) was significantly longer than that on cauliflower and napa cabbage. Furthermore, P. xylostella fecundity on cauliflower (261.90 ± 4.53 eggs female) was significantly highest than on napa cabbage and white cabbage. Intrinsic rate of increase (r) and finite rate of increase (λ) were highest on cauliflower 0.182 day?1 and 1.199 day?1 respectively as comparison to napa cabbage and white cabbage. The highest gross reproductive rate (GRR) and net reproductive rates (R0) of P. xylostella 65.87 and 52.58 respectively on cauliflower then those of other hosts. The findings of the present study indicate that cauliflower is the most suitable cultivar (host) for the development of P. xylostella. Based on these findings, crops like cauliflower can be used as trap crops when napa cabbage and white cabbage are the main crops.  相似文献   
2.
Journal of Plant Growth Regulation - Interest in the use of the nanoparticles as plant growth elicitors mushroomed within the last decade and the field is quite intriguing to meet the growing needs...  相似文献   
3.
There has been considerable recent progress in understanding the processes involved in brain development. An analysis of a number of neurological conditions, together with our studies of the hydrocephalic Texas (H-Tx) rat, presents an important role for cerebrospinal fluid (CSF) in the developmental process. The fluid flow is essentially one-way and the location of the choroid plexuses in the lateral, third, and fourth ventricles allows for the possibility of new components being added to the fluid at these points. The role of the fourth ventricular CSF is particularly interesting since this is added to the fluid downstream of the cerebral hemisphere germinal epithelium (the main site of cortical cell proliferation and differentiation) and is destined for the basal cisterns and subarachnoid space suggesting different target cells to those within the ventricular system. Moreover, other sources of additions to the CSF exist, notably the subcommissural organ, which sits at the opening of the third ventricle into the cerebral aqueduct and is the source of Reisner's fibre, glycoproteins, and unknown soluble proteins. In this paper a model for the role of CSF is developed from studies of the development of the cortex of the H-Tx rat. We propose that CSF is vital in controlling development of the nervous system along the whole length of the neural tube and that the externalisation of CSF during development is essential for the formation of the layers of neurones in the cerebral cortex.  相似文献   
4.

Background

Prostate apoptosis response-4 (Par-4) is a tumor-suppressor protein that selectively activates and induces apoptosis in cancer cells, but not in normal cells. The cancer specific pro-apoptotic function of Par-4 is encoded in its centrally located SAC (Selective for Apoptosis induction in Cancer cells) domain (amino acids 137–195). The SAC domain itself is capable of nuclear entry, caspase activation, inhibition of NF-κB activity, and induction of apoptosis in cancer cells. However, the precise mechanism(s) of how the SAC domain is released from Par-4, in response to apoptotic stimulation, is not well explored.

Results

In this study, we demonstrate for the first time that sphingosine (SPH), a member of the sphingolipid family, induces caspase-dependant cleavage of Par-4, leading to the release of SAC domain containing fragment from it. Par-4 is cleaved at the EEPD131G site on incubation with caspase-3 in vitro, and by treating cells with several anti-cancer agents. The caspase-3 mediated cleavage of Par-4 is blocked by addition of the pan-caspase inhibitor z-VAD-fmk, caspase-3 specific inhibitor Ac-DEVD-CHO, and by introduction of alanine substitution for D131 residue. Moreover, suppression of SPH-induced Akt dephosphorylation also abrogated the caspase dependant cleavage of Par-4.

Conclusion

Evidence provided here shows that Par-4 is cleaved by caspase-3 during SPH-induced apoptosis. Cleavage of Par-4 leads to the generation of SAC domain containing fragment which may possibly be essential and sufficient to induce or augment apoptosis in cancer cells.
  相似文献   
5.
Black pepper is an important medicinal spice traded internationally. The extraction of high quality genomic DNA for PCR amplification from dried black pepper is challenging because of the presence of the exceptionally large amount of oxidized polyphenolic compounds, polysaccharides and other secondary metabolites. Here we report a modified hexadecyl trimethyl ammonium bromide (CTAB) protocol by incorporating potassium acetate and a final PEG precipitation step to isolate PCR amplifiable genomic DNA from dried and powdered berries of black pepper. The protocol has trade implication as it will help in the PCR characterization of traded black peppers from different countries.  相似文献   
6.
The role of the kinase homology domain (KHD) in receptor guanylyl cyclases is to regulate the activity of the catalytic guanylyl cyclase domain. The KHD lacks many of the amino acids required for phosphotransfer activity and, therefore, is not expected to possess kinase activity. Guanylyl cyclase activity of the receptor guanylyl cyclase C (GC-C) is modulated by ATP, and computational modeling showed that the KHD can adopt a structure similar to protein kinases, suggesting that the KHD is the site for ATP interaction. A monoclonal antibody, GCC:4D7, raised to the KHD of GC-C, fails to react with GC-C in the presence of ATP and ATP analogues that regulate GC-C catalytic activity, indicating that a conformational change occurs in the KHD on ATP binding. Mapping of the epitope of the antibody through the use of recombinant protein constructs and phage display showed that the epitope for GC-C:4D7 lies immediately C-terminal to a critical lysine residue (Lys516 in GC-C), required for ATP interaction in protein kinases. By employing a novel approach utilizing ATP-agarose affinity chromatography, we demonstrate that the intracellular domain of GC-C and the KHD bind ATP. Mutation of Lys516 to Ala abolishes ATP binding. Thus, this report is the first to show direct ATP binding to the pseudokinase domain of receptor guanylyl cyclase C, as well as to identify dramatic conformational changes that occur in this domain on ATP binding, akin to those seen in catalytically active protein kinases.  相似文献   
7.

Background

In early 2009, a novel influenza A(H1N1) virus that emerged in Mexico and United States rapidly disseminated worldwide. The spread of this virus caused considerable morbidity with over 18000 recorded deaths. The new virus was found to be a reassortant containing gene segments from human, avian and swine influenza viruses.

Methods/Results

The first case of human infection with A(H1N1)pdm09 in Pakistan was detected on 18th June 2009. Since then, 262 laboratory-confirmed cases have been detected during various outbreaks with 29 deaths (as of 31st August 2010). The peak of the epidemic was observed in December with over 51% of total respiratory cases positive for influenza. Representative isolates from Pakistan viruses were sequenced and analyzed antigenically. Sequence analysis of genes coding for surface glycoproteins HA and NA showed high degree of high levels of sequence identity with corresponding genes of regional viruses circulating South East Asia. All tested viruses were sensitive to Oseltamivir in the Neuraminidase Inhibition assays.

Conclusions

Influenza A(H1N1)pdm09 viruses from Pakistan form a homogenous group of viruses. Their HA genes belong to clade 7 and show antigenic profile similar to the vaccine strain A/California/07/2009. These isolates do not show any amino acid changes indicative of high pathogenicity and virulence. It is imperative to continue monitoring of these viruses for identification of potential variants of high virulence or drug resistance.  相似文献   
8.
The effect of triadimefon was investigated in a medicinal plant, Catharanthus roseus subjected to water deficit stress. The abscisic acid (ABA) level, DNA and RNA contents and activities of ATPase and protease were found varying in different parts of the plants under treatment. Drought treatment increased the ABA level more than twofold in all parts of the plants. TDM treatment to the drought stressed plants showed highest contents. In roots, stem and leaves, drought stress caused a decrease in the DNA and RNA contents when compared with control and other treatments. TDM treatment with drought increased the nucleic acid contents to the level of the control roots. The activity of ATPase and protease were increased under drought treatment and lowered due to TDM applications. This information could be useful in the field of soil water deficits reclamation efforts by using plant growth regulators.  相似文献   
9.
Two varieties, rosea and alba, of Catharanthus roseus (L.) G. Don. were screened for their water use efficiency under two watering regimes, viz. 60 and 100% filed capacity in the present study. Drought stress was imposed at 60% filed capacity from 30 to 70 days after sowing, while the control pots were maintained at 100% filed capacity throughout the entire growth period. Leaf area duration, cumulative water transpired, water use efficiency, net assimilation rate, mean transpiration rate, harvest index, biomass and yield under the water deficit level were measured from both stressed and well-watered control plants. Water use efficiency significantly increased in both varieties under water stress. Drought stress decreased leaf area duration, cumulative water transpired, net assimilation rate, mean transpiration rate, harvest index, and biomass yield in both varieties studied. Among the varieties, rosea variety showed the best results.  相似文献   
10.
With the advent of molecular biotechnologies, new opportunities are available for plant physiologists to study the relationships between wheat traits and their genetic control. The functional determinations of all genes that participate in drought adaptation or tolerance reactions are expected to provide an integrated understanding of the biochemical and physiological basis of stress responses in wheat. However, despite all the recent technological breakthroughs, the overall contribution of genomics-assisted breeding to the release of drought-resilient wheat cultivars has so far been marginal. This paper critically analyses how biotechnological, genetic and information tools can contribute to accelerating the release of improved, drought-tolerant wheat cultivars. Armed with such information from established models, it will be possible to elucidate the physiological basis of drought tolerance and to select genotypes with an improved yield under water-limited conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号