首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
  2013年   1篇
  2012年   1篇
  2010年   1篇
  2007年   1篇
  2006年   3篇
  2005年   1篇
  2003年   2篇
  2002年   1篇
  1999年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
Hereditary spastic paraplegias (HSPs) are characterized by progressive weakness and spasticity of the legs because of the degeneration of cortical motoneuron axons. SPG15 is a recessively inherited HSP variant caused by mutations in the ZFYVE26 gene and is additionally characterized by cerebellar ataxia, mental decline, and progressive thinning of the corpus callosum. ZFYVE26 encodes the FYVE domain-containing protein ZFYVE26/SPASTIZIN, which has been suggested to be associated with the newly discovered adaptor protein 5 (AP5) complex. We show that Zfyve26 is broadly expressed in neurons, associates with intracellular vesicles immunopositive for the early endosomal marker EEA1, and co-fractionates with a component of the AP5 complex. As the function of ZFYVE26 in neurons was largely unknown, we disrupted Zfyve26 in mice. Zfyve26 knockout mice do not show developmental defects but develop late-onset spastic paraplegia with cerebellar ataxia confirming that SPG15 is caused by ZFYVE26 deficiency. The morphological analysis reveals axon degeneration and progressive loss of both cortical motoneurons and Purkinje cells in the cerebellum. Importantly, neuron loss is preceded by accumulation of large intraneuronal deposits of membrane-surrounded material, which co-stains with the lysosomal marker Lamp1. A density gradient analysis of brain lysates shows an increase of Lamp1-positive membrane compartments with higher densities in Zfyve26 knockout mice. Increased levels of lysosomal enzymes in brains of aged knockout mice further support an alteration of the lysosomal compartment upon disruption of Zfyve26. We propose that SPG15 is caused by an endolysosomal membrane trafficking defect, which results in endolysosomal dysfunction. This appears to be particularly relevant in neurons with highly specialized neurites such as cortical motoneurons and Purkinje cells.  相似文献   
2.
3.
Different cultivation strategies have been compared for the production of Rhizopus oryzae lipase (ROL) from Pichia pastoris. Several drawbacks have been found using a methanol non-limited fed-batch. On the one hand, oxygen limitation appeared at early cell dry weights and, on the other hand, high cell death was observed. A temperature limited fed-batch has been proposed to solve both problems. However, in our case study a methanol non-limited fed-batch results in better productivities. Finally, a lower salt medium were used to overcome cell death problems and a temperature limited fed-batch was applied thereafter to solve oxygen transfer limitations. This combined strategy has resulted in lower productivities when compared to a methanol non-limited fed-batch. However the culture could be longer prolonged and a 1.3-fold purer final product was obtained mainly due to cell death reduction.  相似文献   
4.
A fusion protein composed of a cellulose binding domain from Neocallimastix patriciarum cellulase A and Candida antarctica lipase B (CBD-lipase) was produced by Pichia pastoris methanol utilization plus phenotype in high cell-density cultures. The genes expressing CBD-lipase were fused to the alpha-factor secretion signal sequence of Saccharomyces cerevisiae and placed under the control of the alcohol oxidase gene (AOX1) promoter. To control the repression and induction of AOX1 and oxygen demand at high cell density, a four-stage process was used. Batch growth on glycerol was used in the first step to provide biomass (28 g L-1) while product formation was prevented due to repression of the AOX1. The second stage was exponential fed-batch growth on glycerol, which caused a slight increase of the enzyme alcohol oxidase activity due to derepression of the AOX1. This procedure resulted in smooth transition to exponential fed-batch growth on methanol, the third stage, in which the AOX1 was strongly induced. The fourth stage was constant fed-batch growth on methanol used to control the oxygen demand at the high cell density. A kinetic model was developed that could predict biomass growth and oxygen consumption in processes with and without oxygen-enriched air. With oxygen enrichment to 34% O2 in the inlet air the methanol feed rate could be increased by 50% and this resulted in 14% higher final cell density (from 140 to 160 g L-1 cell dry weight). The increased methanol feed rate resulted in a proportionally increased specific rate of product secretion to the medium. After an initial decrease, the synthesis capacity of the cell was kept constant throughout the cultivation, which made the product concentration increase almost constantly during the process. The kinetic model also describes how the low maintenance demand of P. pastoris compared with E. coli enables this organism to grow to such high cell densities.  相似文献   
5.
For improved interfacing of the Pichia pastoris fed-batch cultivation process with expanded bed adsorption (EBA) technique, a modified cultivation technique was developed. The modification included the reduction of the medium salt concentration, which was then kept constant by regulating the medium conductivity at low value (about 8 mS/cm) by salt feeding. Before loading, the low conductivity culture broth was diluted only to reduce viscosity, caused by high cell density. The concept was applied to a one-step recovery and purification procedure for a fusion protein composed of a cellulose-binding module (CBM) from Neocallimastix patriciarum cellulase 6A fused to lipase B from Candida antarctica (CALB). The modified cultivation technique resulted in lower cell death and consequently lower concentration of proteases and other contaminating proteins in the culture broth. Flow cytometry analysis showed 1% dead (propidium-stained) cells compared to 3.5% in the reference process. During the whole process of cultivation and recovery, no proteolysis was detected and in the end of the cultivation, the product constituted 87% of the total supernatant protein. The lipase activity in the culture supernatant increased at an almost constant rate up to a value corresponding to 2.2 g/L of CBM-CALB. In the EBA process, no cell-adsorbent interaction was detected but the cell density had to be reduced by a two-times dilution to keep a proper bed expansion. At flow velocity of 400 cm/h, the breakthrough capacity was 12.4 g/L, the product yield 98%, the concentration factor 3.6 times, the purity about 90%, and the productivity 2.1 g/L x h.  相似文献   
6.
Methanol limited fed-batch cultivation was applied for production of a plant derived beta-glucosidase by Pichia pastoris. The beta-glucosidase was recovered by expanded bed adsorption chromatography applied to the whole culture broth. The new Streamline Direct HST1 adsorbent was compared with Streamline SP. Higher bead density made it possible to operate at two times higher feedstock concentration and at two times higher flow velocity. The higher binding capacity in the conductivity range 0-48 mS cm(-1) of Streamline Direct HST1 might be caused by the more complex interaction of multi-modal ligand in Streamline Direct HST1 compared to the single sulphonyl group in Streamline SP. Harsher elution condition had to be applied for dissociation of beta-glucosidase from Streamline Direct HST1 due to stronger binding interaction. The 5% dynamic binding capacity was 160 times higher for Streamline Direct HST1 compared to Streamline SP. The yield of beta-glucosidase on Streamline Direct HST1 (74%) was significantly higher than on Streamline SP (48%). Furthermore, beta-glucosidase was purified with a factor of 4.1 and concentrated with a factor of 17 on Streamline Direct HST1 while corresponding parameters were half of these values for Streamline SP. Thus, for all investigated parameters Streamline Direct HST1 was a more suitable adsorbent for recovery of recombinant beta-glucosidase from unclarified P. pastoris high-cell-density cultivation broth.  相似文献   
7.
Multiplex ligation-dependent probe amplification (MLPA) has become a standard method for identifying copy number mutations in diagnostic and research settings. The occurrence of false-positive deletion findings and the underlying causes are well recognized, whereas false-positive duplication/amplification findings have not been appreciated so far. We here present three pertinent cases which were only identified on extended, nonstandard secondary analyses. We also offer and experimentally validate a potential explanation. Our findings imply that MLPA data indicating gain of genomic sequence require validation on an independent sample or by an independent method.  相似文献   
8.

Background  

A temperature limited fed-batch (TLFB) technique is described and used for Pichia pastoris Mut+ strain cultures and compared with the traditional methanol limited fed-batch (MLFB) technique. A recombinant fusion protein composed of a cellulose-binding module (CBM) from Neocallimastix patriciarum cellulase 6A and lipase B from Candida antarctica (CALB), was produced and secreted by this strain.  相似文献   
9.
An oxygen-limited fed-batch technique (OLFB) was compared to traditional methanol-limited fed-batch technique (MLFB) for the production of recombinant Thai Rosewood β-glucosidase with Pichia pastoris. The degree of energy limitation, expressed as the relative rate of respiration (q O/q O,max), was kept similar in both the types of processes. Due to the higher driving force for oxygen transfer in the OLFB, the oxygen and methanol consumption rates were about 40% higher in the OLFB. The obligate aerobe P. pastoris responded to the severe oxygen limitation mainly by increased maintenance demand, measured as increased carbon dioxide production per methanol, but still somewhat higher cell density (5%) and higher product concentrations (16%) were obtained. The viability was similar, about 90–95%, in both process types, but the amount of total proteins released in the medium was much less in the OLFB processes resulting in substantially higher (64%) specific enzyme purity for input to the downstream processing.  相似文献   
10.
Industrial 20-m3-scale and laboratory-scale aerobic fed-batch processes with Escherichia coli were compared. In the large-scale process the observed overall biomass yield was reduced by 12% at a cell density of 33 g/l and formate accumulated to 50 mg/l during the later constant-feeding stage of the process. Though the dissolved oxygen signal did not show any oxygen limitation, it is proposed that the lowered yield and the formate accumulation are caused by mixed-acid fermentation in local zones where a high glucose concentration induced oxygen limitation. The hypothesis was further investigated in a scale-down reactor with a controlled oxygen-limitation compartment. In this scale-down reactor similar results were obtained: i.e. an observed yield lowered by 12% and formate accumulation to 238 mg/l. The dynamics of glucose uptake and mixed-acid product formation (acetate, formate, d-lactate, succinate and ethanol) were investigated within the 54 s of passage time through the oxygen-limited compartment. Of these, all except succinate and ethanol were formed; however, the products were re-assimilated in the oxygen-sufficient reactor compartment. Formate was less readily assimilated, which accounts for its accumulation. The total volume of the induced-oxygen-limited zones was estimated to be 10% of the whole liquid volume in the large bioreactor. It is also suggested that repeated excretion and re-assimilation of mixed-acid products contribute to the reduced yield during scale-up and that formate analysis is useful for detecting local oxygen deficiency in large-scale E. coli processes. Received: 7 November 1998 / Received revision: 4 February 1999 / Accepted: 5 February 1999  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号