首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88篇
  免费   0篇
  2009年   1篇
  2008年   1篇
  2006年   3篇
  2005年   2篇
  2004年   1篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1988年   3篇
  1987年   4篇
  1986年   7篇
  1985年   16篇
  1984年   2篇
  1983年   5篇
  1982年   5篇
  1981年   10篇
  1980年   2篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1973年   4篇
  1970年   1篇
  1967年   1篇
排序方式: 共有88条查询结果,搜索用时 187 毫秒
1.
2.
In situ hybridization histochemical techniques were used in an attempt to demonstrate atrial natriuretic peptide (ANP) messenger RNA (mRNA) in the rat brain. A synthetic oligonucleotide derived from previously reported ANF cDNA sequence was used as a probe. Northern blot analysis of total RNA isolated from rat heart demonstrated that the oligonucleotide recognized a single species of RNA (0.9 kb), a size consistent with previous reports. Rat heart sections revealed dense accumulations of ANF mRNA in the cardiac atria and lesser densities in the ventricles. Rat brain sections hybridized with the same oligonucleotide did not label ANF mRNA accumulations in any neuronal cell bodies. A possible explanation for this latter observation is either sparsely distributed expressing neurons or low expression and high turnover of ANF mRNA in brain.  相似文献   
3.
Atrial natriuretic peptide in the central nervous system of the rat   总被引:2,自引:0,他引:2  
1. Studies of the presence of atrial natriuretic peptide immunoreactivity and receptor binding sites in the central nervous system have revealed unusual sites of interest. 2. As a result, numerous studies have appeared that indicate that brain atrial natriuretic peptide is implicated in the regulation of blood pressure, fluid and sodium balance, cerebral blood flow, brain microcirculation, blood-brain barrier function, and cerebrospinal fluid production. 3. Alteration of the atrial natriuretic peptide system in the brain could have important implications in hypertensive disease and disorders of water balance in the central nervous system.  相似文献   
4.
In order to evaluate the mode of action of calcitonin gene-related peptide (CGRP) on the neuroeffector mechanism of peripheral sympathetic nerve fibers, the effects of CGRP were tested on the electrical stimulated and the non-stimulated preparations of the isolated rat vas deferens. The contractile responses, which were mediated predominantly by activation of postganglionic noradrenergic nerve fibers, were dose-dependently inhibited by CGRP in concentrations ranging from 0.1 to 10 nM. The inhibitory response produced by CGRP in high concentrations (greater than 2 nM) usually returned to the control level at 20-30 min and were rarely tachyphylactic. The inhibitory action of CGRP was not modified by pretreatment with 10(-7) M propranolol or 10(-7) M atropine. Contractions produced by exogenous norepinephrine (NE) and 5-hydroxytryptamine (5-HT) in unstimulated preparations were not affected by pretreatment with CGRP in a low concentration (less than 2 nM). On the other hand, the contractions were slightly reduced 1 min after pretreatment with CGRP in high concentrations (greater than 5 nM), which recovered in 15 min after constant flow washout. High concentrations of CGRP also caused a concentration-dependent relaxation on the precontracted preparations produced by high potassium (60 mM K+) solution. These results suggest that CGRP in high concentrations (greater than 5 nM) may have a non-specific inhibitory action on the postsynaptic plasma membrane of the smooth muscle cell and a postulated CGRP receptor exists presynaptically in the rat vas deferens and that CGRP may inhibit the release of NE during adrenergic nerve stimulation.  相似文献   
5.
Young rats (21 days old) made nutritionally iron deficient, by feeding them a semisynthetic diet containing skimmed milk for 5 weeks, had significantly lowered hemoglobin levels (5.2 +/- 4 g/100 ml). The nonheme iron content in caudate nucleus was decreased by 47%. The behavioral response of iron-deficient rats to apomorphine (2 mg/kg) and the density of 3,4-dihydroxyphenylethylamine (dopamine) D2 receptors, as measured by [3H]spiperone binding in caudate nucleus, were significantly reduced by 70 and 53%, respectively. The possibility that nutritional iron deficiency may affect protein content in brain was investigated by measuring the apparent concentration of proteins in caudate nucleus and nucleus accumbens from iron-deficient and control animals using two-dimensional gel electrophoresis. The data indicate that iron deficiency can affect content in these two brain regions. Significant changes in the content of 10 proteins were noted in the caudate nucleus and nucleus accumbens in iron-deficient rats. The albumin level was significantly increased in both regions studied, whereas the neuron-specific enolase level was increased in the nucleus accumbens and the glial fibrillary acidic protein level was reduced in the caudate nucleus. The significance of these protein content changes, as well as a reduction in content of a 94-kilodalton protein (a molecular size similar to that of the D2 dopamine receptor), remains to be established.  相似文献   
6.
7.
Thyrotropin-releasing hormone (TRH) has been shown to increase heart rate as well as blood pressure when administered into rat brain. The present study investigated the mechanism by which the TRH analog MK-771 produces these effects when injected into the preoptic suprachiasmatic nucleus (POSC). MK-771, at a dose of 125 pmol (50 ng), produced significant increases in both heart rate and blood pressure. These effects occurred within 5 minutes of microinjection and lasted approximately 20-30 minutes. Pretreatment with either the beta-adrenergic antagonist propranolol or the muscarinic antagonist methylatropine, administered into the POSC, significantly altered the response produced by MK-771. Propranolol, at a dose of 7 nmol, and methylatropine at a dose of 0.5 nmol, significantly inhibited the tachycardia produced by MK-771. In addition, methylatropine, at a dose of 0.5 nmol, significantly reduced the increase in diastolic pressure produced by the TRH agonist. These results are consistent with the idea that TRH agonists, when administered centrally, produce cardiovascular alterations through the autonomic nervous system.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号