首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   12篇
  2021年   2篇
  2019年   1篇
  2017年   1篇
  2016年   4篇
  2015年   8篇
  2014年   4篇
  2011年   3篇
  2010年   6篇
  2009年   4篇
  2008年   1篇
  2007年   3篇
  2006年   1篇
  2005年   3篇
  2004年   3篇
  2003年   2篇
  2001年   1篇
  2000年   3篇
  1998年   5篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1992年   1篇
  1991年   2篇
  1990年   8篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1984年   3篇
  1983年   2篇
  1981年   2篇
  1979年   1篇
  1978年   2篇
  1977年   2篇
  1976年   1篇
  1968年   1篇
排序方式: 共有91条查询结果,搜索用时 15 毫秒
1.
Production of phaseollin was measured in cell suspension cultures and whole plants of Phaseolus vulgaris. In suspension cultures phaseollin appeared when there was no further increase in cell mass. Cells transferred to a medium without auxins yielded three times higher phaseollin concentrations than cells grown in their presence. Addition of autoclaved fungal mycelia or polysaccharides as elicitors resulted in an increased phaseollin concentration in the cell suspension.In whole plants phaseollin could be detected only after the plants were challenged by a fungus which caused lesions (browning) of the upper root neck region, Rhizoctonia solani. Treatment of non-infected plants with autoclaved fungal mycelia or other elicitors did not induce phaseollin production. However, when they were added before or together with the pathogenic fungus, the elicitors further increased phaseollin concentration in the root neck regions of the plants. This indicated that the pathogenic fungus was important for the penetration of the elicitors to inner plant tissues where phaseollin (and probably other phytoalexins) is produced.  相似文献   
2.
We have examined the phylogenetic distribution of two t-specific markers among representatives of various taxa belonging to the genus Mus. The centromeric TCP-1a marker (a testicular protein variant specific for all t-haplotypes so far studied) has also been apparently detected in several non-t representatives of the Mus IVA, Mus IVB, and probably M. cervicolor species. By contrast, a t-specific restriction- fragment-length polymorphism allele (RFLP) of the telomeric alpha- globin pseudogene DNA marker alpha-psi-4 was found only in animals belonging to the M. musculus-complex species either bearing genuine t- haplotypes or, like the M. m. bactrianus specimen studied here, likely to do so. This t-specific alpha-psi-4 RFLP allele was found to be as divergent from the RFLP alleles of the latter, non-t, taxonomical groups as it is from Mus 4A, Mus 4B, or M. spretus ones. These results suggest the presence of t-haplotypes and of t-specific markers in populations other than those belonging to the M. m. domesticus and M. m. musculus subspecies, implying a possible origin for t-haplotypes prior to the radiation of the most recent offshoot of the Mus genus (i.e., the spretus/domesticus divergence), some 1-3 Myr ago.   相似文献   
3.
The aglycon form of the steroidal sapogenin furost -5-ene-3 beta, 22,26-triol, 3 beta- chacotrioside 26 beta-D-glucopyranoside was isolated from cell suspension cultures of Dioscorea deltoidea and its molecular structure was determined by mass spectrometry and 1H and 13C n.m.r. spectroscopy. From kinetic studies and incorporation experiments with [1-14C]acetate it was concluded that the steroidal compound (in the glycoside form) is an intermediate in vivo in diosgenin biosynthesis. It accumulated in growing cells of D. deltoidea and was metabolized to diosgenin (in the glycoside form, i.e. dioscin ) in non-dividing cells.  相似文献   
4.
Motile extracts have been prepared from Dictyostelium discoideum by homogenization and differential centrifugation at 4 degrees C in a stabilization solution (60). These extracts gelled on warming to 25 degrees Celsius and contracted in response to micromolar Ca++ or a pH in excess of 7.0. Optimal gelation occurred in a solution containing 2.5 mM ethylene glycol-bis (β-aminoethyl ether)N,N,N',N'-tetraacetate (EGTA), 2.5 mM piperazine-N-N'-bis [2-ethane sulfonic acid] (PIPES), 1 mM MgC1(2), 1 mM ATP, and 20 mM KCI at ph 7.0 (relaxation solution), while micromolar levels of Ca++ inhibited gelation. Conditions that solated the gel elicited contraction of extracts containing myosin. This was true regardless of whether chemical (micromolar Ca++, pH >7.0, cytochalasin B, elevated concentrations of KCI, MgC1(2), and sucrose) or physical (pressure, mechanical stress, and cold) means were used to induce solation. Myosin was definitely required for contraction. During Ca++-or pH-elicited contraction: (a) actin, myosin, and a 95,000-dalton polypeptide were concentrated in the contracted extract; (b) the gelation activity was recovered in the material sqeezed out the contracting extract;(c) electron microscopy demonstrated that the number of free, recognizable F-actin filaments increased; (d) the actomyosin MgATPase activity was stimulated by 4- to 10-fold. In the absense of myosin the Dictyostelium extract did not contract, while gelation proceeded normally. During solation of the gel in the absense of myosin: (a) electron microscopy demonstrated that the number of free, recognizable F- actin filaments increased; (b) solation-dependent contraction of the extract and the Ca++-stimulated MgATPase activity were reconstituted by adding puried Dictyostelium myosin. Actin purified from the Dictyostelium extract did not gel (at 2 mg/ml), while low concentrations of actin (0.7-2 mg/ml) that contained several contaminating components underwent rapid Ca++ regulated gelation. These results indicated : (a) gelation in Dictyostelium extracts involves a specific Ca++-sensitive interaction between actin and several other components; (b) myosin is an absolute requirement for contraction of the extract; (c) actin-myosin interactions capable of producing force for movement are prevented in the gel, while solation of the gel by either physical or chemical means results in the release of F-actin capable of interaction with myosin and subsequent contraction. The effectiveness of physical agents in producting contraction suggests that the regulation of contraction by the gel is structural in nature.  相似文献   
5.
Effects of various nutritional and environmental factors on the accumulation of organic acids (mainly L-malic acid) by the filamentous fungus Aspergillus flavus were studied in a 16-L stirred fermentor. Improvement of the molar yield (moles acid produced per moles glucose consumed) of L-malic acid was obtained mainly by increasing the agitation rate (to 350 rpm) and the Fe(z+) ion concentration (to 12 mg/L) and by lowering the nitrogen (to 271 mg/L) and phosphate concentrations (to 1.5 mM) in the medium. These changes resulted in molar yields for L-malic acid and total C(4) acids (L-malic, succinic, and fumaric acids) of 128 and 155%, respectively. The high molar yields obtained (above 100%) are additional evidence for the operation of part of the reductive branch of the tricarboxylic acid cycle in L-malic acid accumulation by A. flavus. The fermentation conditions developed using the above mentioned factors and 9% CaCO(3) in the medium resulted in a high concentration (113 g/L L-malic acid from 120 g/L glucose utilized) and a high overall productivity (0.59 g/L h) of L-malic acid. These changes in acid accumulation coincide with increases in the activities of NAD(+)-malate dehydrogenase, fumarase, and citrate synthase.  相似文献   
6.
The localization of pyruvate carboxylase (cytosolic or mitochondrial) was studied in nine different Aspergillus species (14 strains). In some species (A. aculeatus, A. flavus, A. foetidus, A. nidulans, A. ochraceus, and A. sojae), the pyruvate carboxylase activity could be detected only in the cytosolic fraction of the cells. Pyruvate carboxylase has been found only in the mitochondrial fraction of two strains of Aspergillus wentii. In Aspergillus oryzae and in five strains of Aspergillus niger, pyruvate carboxylase activity was detected both in the mitochondrial fraction and in the cytosol. There was no quantitative or qualitative correlation between the activities of pyruvate carboxylase in the mitochondrial and cytosolic fractions of the cells and the ability of the various Aspergillus strains to accumulate different organic acids.  相似文献   
7.
The observation that increased muscular activity leads to muscle hypertrophy is well known, but identification of the biochemical and physiological mechanisms by which this occurs remains an important problem. Experiments have been described (5, 6) which suggest that creatine, an end product of contraction, is involved in the control of contractile protein synthesis in differentiating skeletal muscle cells and may be the chemical signal coupling increased muscular activity and the increased muscular mass. During contraction, the creatine concentration in muscle transiently increases as creatine phosphate is hydrolyzed to regenerate ATP. In isometric contraction in skeletal muscle for example, Edwards and colleagues (3) have found that nearly all of the creatine phosphate is hydrolyzed. In this case, the creatine concentration is increased about twofold, and it is this transient change in creatine concentration which is postulated to lead to increased contractile protein synthesis. If creatine is found in several intracellular compartments, as suggested by Lee and Vissher (7), local changes in concentration may be greater then twofold. A specific effect on contractile protein synthesis seems reasonable in light of the work of Rabinowitz (13) and of Page et al. (11), among others, showing disproportionate accumulation of myofibrillar and mitochondrial proteins in response to work-induced hypertrophy and thyroxin-stimulated growth. Previous experiments (5, 6) have shown that skeletal muscles cells which have differentiated in vitro or in vivo synthesize myosin heavy-chain and actin, the major myofibrillar polypeptides, faster when supplied creatine in vitro. The stimulation is specific for contractile protein synthesis since neither the rate of myosin turnover nor the rates of synthesis of noncontractile protein and DNA are affected by creatine. The experiments reported in this communication were undertaken to test whether creatine selectively stimulates contractile protein synthesis in heart as it does in skeletal muscle.  相似文献   
8.
Hepatic and cardiac drug adverse effects are among the leading causes of attrition in drug development programs, in part due to predictive failures of current animal or in vitro models. Hepatocytes and cardiomyocytes differentiated from human induced pluripotent stem cells (iPSCs) hold promise for predicting clinical drug effects, given their human-specific properties and their ability to harbor genetically determined characteristics that underlie inter-individual variations in drug response. Currently, the fetal-like properties and heterogeneity of hepatocytes and cardiomyocytes differentiated from iPSCs make them physiologically different from their counterparts isolated from primary tissues and limit their use for predicting clinical drug effects. To address this hurdle, there have been ongoing advances in differentiation and maturation protocols to improve the quality and use of iPSC-differentiated lineages. Among these are in vitro hepatic and cardiac cellular microsystems that can further enhance the physiology of cultured cells, can be used to better predict drug adverse effects, and investigate drug metabolism, pharmacokinetics, and pharmacodynamics to facilitate successful drug development. In this article, we discuss how cellular microsystems can establish microenvironments for these applications and propose how they could be used for potentially controlling the differentiation of hepatocytes or cardiomyocytes. The physiological relevance of cells is enhanced in cellular microsystems by simulating properties of tissue microenvironments, such as structural dimensionality, media flow, microfluidic control of media composition, and co-cultures with interacting cell types. Recent studies demonstrated that these properties also affect iPSC differentiations and we further elaborate on how they could control differentiation efficiency in microengineered devices. In summary, we describe recent advances in the field of cellular microsystems that can control the differentiation and maturation of hepatocytes and cardiomyocytes for drug evaluation. We also propose how future research with iPSCs within engineered microenvironments could enable their differentiation for scalable evaluations of drug effects.  相似文献   
9.
Presence or absence of N-acetylneuraminic acid (Neu5Ac) can change a sialylated glycoprotein's serum half-life and possibly its function. We evaluated the linearity, sensitivity, reproducibility, and accuracy of a HPAEC/PAD method to determine its suitability for routine simultaneous analysis of Neu5Ac and N-glycolylneuraminic acid (Neu5Gc). An effective internal standard for this analysis is 3-deoxy-d-glycero-d- galacto-2-nonulosonic acid (KDN). We investigated the effect of the Au working electrode recession and determined that linear range and sensitivity were dependent on electrode recession. Using an electrode that was 350 &mgr;m recessed from the electrode block, the minimum detection limits of Neu5Ac, KDN, and Neu5Gc were 2, 5, and 2 pmol, respectively, and were reduced to 1, 2, and 0.5 pmol using a new electrode. The response of standards was linear from 10 to 500 pmol (r2>0.99) regardless of electrode recession. When Neu5Ac, KDN, and Neu5Gc (200 pmol each) were analyzed repetitively for 48 h, area RSDs were <3%. Reproducibility was unaffected when injections of glycoprotein neuraminidase and acid digestions were interspersed with standard injections. Area RSDs of Neu5Ac and Neu5Gc improved when the internal standard was used. We determined the precision and accuracy of this method for both a recessed and a new working electrode by analyzing Neu5Ac and Neu5Gc contents of bovine fetuin and bovine and human transferrins. Results were consistent with published values and independent of the working electrode. The sensitivity, reproducibility, and accuracy of this method make it suitable for direct routine analysis of glycoprotein Neu5Ac and Neu5Gc contents.   相似文献   
10.
The white matter contains long-range connections between different brain regions and the organization of these connections holds important implications for brain function in health and disease. Tractometry uses diffusion-weighted magnetic resonance imaging (dMRI) to quantify tissue properties along the trajectories of these connections. Statistical inference from tractometry usually either averages these quantities along the length of each fiber bundle or computes regression models separately for each point along every one of the bundles. These approaches are limited in their sensitivity, in the former case, or in their statistical power, in the latter. We developed a method based on the sparse group lasso (SGL) that takes into account tissue properties along all of the bundles and selects informative features by enforcing both global and bundle-level sparsity. We demonstrate the performance of the method in two settings: i) in a classification setting, patients with amyotrophic lateral sclerosis (ALS) are accurately distinguished from matched controls. Furthermore, SGL identifies the corticospinal tract as important for this classification, correctly finding the parts of the white matter known to be affected by the disease. ii) In a regression setting, SGL accurately predicts “brain age.” In this case, the weights are distributed throughout the white matter indicating that many different regions of the white matter change over the lifespan. Thus, SGL leverages the multivariate relationships between diffusion properties in multiple bundles to make accurate phenotypic predictions while simultaneously discovering the most relevant features of the white matter.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号