首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   94篇
  免费   17篇
  2023年   1篇
  2022年   3篇
  2021年   1篇
  2019年   3篇
  2018年   3篇
  2017年   6篇
  2016年   3篇
  2015年   5篇
  2014年   6篇
  2013年   4篇
  2012年   9篇
  2011年   8篇
  2010年   3篇
  2009年   4篇
  2008年   5篇
  2007年   5篇
  2006年   7篇
  2005年   4篇
  2004年   5篇
  2003年   3篇
  2002年   3篇
  2001年   5篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1995年   1篇
  1992年   2篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
排序方式: 共有111条查询结果,搜索用时 390 毫秒
1.
Using the patch-clamp technique, we observed profound oscillations of the whole-vacuole outward current across the tonoplast of Mesembryanthemum crystallinum L. (common ice plant). These current oscillations showed a clear voltage dependence and appeared at membrane potentials more positive than 90–100 mV. This paper describes the oscillations in terms of two separate mechanisms. First, the Mesembryanthemum vacuolar membrane shows a negative slope conductance at membrane potentials more positive than 100–120 mV. The fact that the oscillations and the negative slope conductance show a similar threshold potential suggests that (part of) the same mechanism is involved in both phenomena. The second mechanism involved is the voltage drop across the series resistance. As a result, the potential actually experienced by the vacuolar membrane deviates from the command potential defined by the patch-clamp amplifier. This deviation depends in an Ohmic manner on the current magnitude. We suggest that the interplay of the negative slope conductance and the voltage drop across the series resistance can cause a positive feedback which is responsible for the current oscillations. Received: 30 April 1999/Revised: 9 September  相似文献   
2.
3.
Taura syndrome virus (TSV) is a member of the family Dicistroviridae that infects Pacific white shrimp Litopenaeus vannamei (also called Penaeus vannamei), and its replication strategy is largely unknown. To identify the viral replication site within infected shrimp cells, the viral RNA was located in correlation with virus-induced membrane rearrangement. Ultrastructural changes in the infected cells, analyzed by transmission electron microscopy (TEM), included the induction and proliferation of intracellular vesicle-like membranes, while the intracytoplasmic inclusion bodies and pyknotic nuclei indicative of TSV infection were frequently seen. TSV plus-strand RNA, localized by electron microscopic in situ hybridization (EM-ISH) using TSV-specific cDNA probes, was found to be associated with the membranous structures. Moreover, TSV particles were observed in infected cells by TEM, and following EM-ISH, they were also seen in close association with the proliferating membranes. Taken together, our results suggest that the membranous vesicle-like structures carry the TSV RNA replication complex and that they are the site of nascent viral RNA synthesis. Further investigations on cellular origins and biochemical compositions of these membranous structures will elucidate the morphogenesis and propagation strategy of TSV.  相似文献   
4.
Asymmetric cis-platinum(II) complexes with isopropylamine and two different azole ligands were synthesized and characterized with different techniques. In addition, for one of the complexes the X-ray structure was determined. Cytotoxicity tests using several human tumor cell lines, including the cisplatin-sensitive cell line A2780 and its cisplatin-resistant analogue. These results were compared with the results obtained for the trans isomers of the presented complexes and a relation between the structure and the activity was established. It was found that complexes with cis geometry are less active than their trans analogues, in particular in the resistant cell line A2780R. However, complex 1 can overcome cisplatin resistance to a certain extent. In the interaction with GMP, the asymmetric cis-Pt(II) complexes react with similar rates as their trans analogues and they behave as bifunctional species.  相似文献   
5.
Plant epidermal trichomes are as varied in morphology as they are in function. In the halophyte Mesembryanthemum crystallinum, specialized trichomes called epidermal bladder cells (EBC) line the surface of leaves and stems, and increase dramatically in size and volume upon plant salt-treatment. These cells have been proposed to have roles in plant defense and UV protection, but primarily in sodium sequestration and as water reservoirs. To gain further understanding into the roles of EBC, a cell-type-specific proteomics approach was taken in which precision single-cell sampling of cell sap from individual EBC was combined with shotgun peptide sequencing (LC-MS/MS). Identified proteins showed diverse biological functions and cellular locations, with a high representation of proteins involved in H(+) -transport, carbohydrate metabolism, and photosynthesis. The proteome of EBC provides insight into the roles of these cells in ion and water homeostasis and raises the possibility that they are photosynthetically active and functioning in Crassulacean acid metabolism.  相似文献   
6.
Wolbachia is a genus of parasitic alphaproteobacteria found in arthropods and nematodes, and represents on of the most common, widespread endosymbionts known. Wolbachia affects a variety of reproductive functions in its host (e.g., male killing, cytoplasmic incompatibility, parthenogenesis), which have the potential to dramatically impact host evolution and species formation. Here, we present the first broad-scale study to screen natural populations of native Hawaiian insects for Wolbachia, focusing on the endemic Diptera. Results indicate that Wolbachia infects native Hawaiian taxa, with alleles spanning phylogenetic supergroups, A and B. The overall frequency of Wolbachia incidene in Hawaiian insects was 14%. The incidence of infection in native Hawaiian Diptera was 11% for individuals and 12% for all species screened. Wolbachia was not detected in two large, widespread Hawaiian dipteran families—Dolichopodidae (44 spp screened) and Limoniidae (12 spp screened). Incidence of infection within endemic Hawaiian lineages that carry Wolbachia was 18% in Drosophilidae species, 25% in Caliphoridae species, > 90% in Nesophrosyne species, 20% in Drosophila dasycnemia and 100% in Nesophrosyne craterigena. Twenty unique alleles were recovered in this study, of which 18 are newly recorded. Screening of endemic populations of D. dasycnemia across Hawaii Island revealed 4 unique alleles. Phylogenetic relationships and allele diversity provide evidence for horizontal transfer of Wolbachia among Hawaiian arthropod lineages.  相似文献   
7.
8.
A salt-tolerant stable cell-suspension culture from the halophyte Mesembryanthemum crystallinum L. has been established from calli generated from leaves of 6-week-old well-watered plants. Optimal cell growth was observed in the presence of 200 mM NaCl, and within 7 d cells were able to concentrate Na+ to levels exceeding those in the growth medium. Accumulation of Na+ was paralled by increases in the compatible solute pinitol and myo-inositol methyl transferase (IMT), a key enzyme in pinitol biosynthesis. Increasing concentrations of NaCl stimulated the activities of tonoplast and plasma-membrane H+-ATPases. Immunodetection of the ATPases showed that the increased activity was not due to changes in protein amount that could be attributed to treatment conditions. A specific role for these mechanisms in salt-adaptation is supported by the inability of mannitol-induced water stress to elicit the same responses, and the absence of enzyme activity and protein expression associated with Crassulacean acid metabolism in the cells. Results demonstrate that these  M. crystallinum cell suspensions show a halophytic growth response, comparable to that of the whole plant, and thus provide a valuable tool for studying signaling and biochemical pathways involved in salt recognition and response. Received: 18 June 1998 / Accepted: 22 August 1998  相似文献   
9.
10.
The colorless, large sulfur bacteria are well known because of their intriguing appearance, size and abundance in sulfidic settings. Since their discovery in 1803 these bacteria have been classified according to their conspicuous morphology. However, in microbiology the use of morphological criteria alone to predict phylogenetic relatedness has frequently proven to be misleading. Recent sequencing of a number of 16S rRNA genes of large sulfur bacteria revealed frequent inconsistencies between the morphologically determined taxonomy of genera and the genetically derived classification. Nevertheless, newly described bacteria were classified based on their morphological properties, leading to polyphyletic taxa. We performed sequencing of 16S rRNA genes and internal transcribed spacer (ITS) regions, together with detailed morphological analysis of hand-picked individuals of novel non-filamentous as well as known filamentous large sulfur bacteria, including the hitherto only partially sequenced species Thiomargarita namibiensis, Thioploca araucae and Thioploca chileae. Based on 128 nearly full-length 16S rRNA-ITS sequences, we propose the retention of the family Beggiatoaceae for the genera closely related to Beggiatoa, as opposed to the recently suggested fusion of all colorless sulfur bacteria into one family, the Thiotrichaceae. Furthermore, we propose the addition of nine Candidatus species along with seven new Candidatus genera to the family Beggiatoaceae. The extended family Beggiatoaceae thus remains monophyletic and is phylogenetically clearly separated from other related families.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号