首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   1篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2009年   2篇
  2008年   3篇
  2007年   1篇
  2006年   2篇
  2005年   3篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
1.
The deer ked (Lipoptena cervi) is an ectoparasitic fly on cervids that has expanded its distribution rapidly in Northern Europe. However, the regulating biotic factors such as predation remain unknown. The host‐independent pupal stage of the fly lasts for several months. Blackish pupae are visible against snow, especially on the bedding sites of hosts, and are thus exposed to predators. To evaluate the role of predation on the invasion dynamics and evolution of L. cervi, we monitored pupal predation on artificial bedding sites in three geographical areas in Finland during winter. We explored: (1) possible predators; (2) magnitude of predation; and (3) whether predation risk is affected by host‐derived cues. We demonstrate that pupae are predated by a number of tit species. Any reddish brown snow discoloration on bedding sites, indicating heavy infestation of the host, serves as an exploitable cue for avian predators, thereby increasing the risk of pupal predation. The ability of tits to use this host‐derived cue seems to be dependent on the prevalence of L. cervi and the period of invasion history, which suggests that it may be a learned behavioural response. Predation by tits may potentially affect the L. cervi population dynamics locally. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 275–286.  相似文献   
2.
1. Occupancy frequency distributions (OFDs) are one means to study species distribution patterns, allowing the delineation of rare and common species. Very few studies have deconstructed entire assemblages by ecological or biological characteristics and subsequently examined OFDs in subgroups of species. 2. The effect of deconstruction of entire assemblages by niche breadth, niche position or body size classes on OFDs in stream insects in three drainage basins was examined. It was hypothesized that OFDs should not vary between different drainage basins, but they should be affected by deconstruction into different niche breadth, niche position or body size classes. 3. The OFDs were typically strongly right‐skewed in all drainage basins. The set of small‐sized species was strongly dominated by rare species, whereas the importance of rare species decreased with increasing body size. Further, while the OFDs of sets of species with marginal niche position or small niche breadth were strongly dominated by rare species, those of species with non‐marginal niche position or large niche breadth showed highly variable degrees of occupancy. The OFDs of non‐marginal species were even uniform in the entire data and one drainage basin, providing partial support to the a priori hypothesis. 4. Niche‐based explanations are likely to account for occupancies of marginal and small‐niched species, whereas the distributions of non‐marginal and broad‐niched species may be not only affected by niche‐based mechanisms but also by spatial dynamics. Deconstruction of OFDs by ecological and biological traits thus showed that the patterns may vary between different subgroups of species.  相似文献   
3.
4.
1. The species–area relationship is considered amongst the few genuine laws in ecology. Although positive species richness–stone area relationships have been found previously in stream systems, very few studies have simultaneously examined species–individuals, individuals–area, species–bryophyte biomass and individuals–bryophyte biomass relationships. We examined these relationships based on temporally replicated assessments of macroinvertebrates on stones at two river sites. 2. We found only one significant species–area relationship out of six relationship tested, and two significant individuals–area relationships. Even these significant relationships were weak, however. By contrast, we detected significant and rather strong relationships between species richness and the number of individuals at both river sites on all three sampling dates. We also found significant relationships of both species richness and the number of individuals with bryophyte biomass at both river sites on all sampling occasions. One of the river sites was disturbed by a bulldozer, and the species–bryophyte biomass relationships were somewhat stronger after the disturbance event. 3. Our findings are quite surprising, given that there were very weak species–area relationships on stream stones. By contrast, our results suggest a pivotal role for bryophyte biomass in determining the species richness and the number of individuals of stream macroinvertebrates at this small scale. The most probably origin of these relationships begins with bryophyte cover, which determines the number of individuals, and subsequently passively affects species richness. Thus, there is not necessarily a direct mechanism that determines the variability of species richness on stream stones. 4. Experimental studies are needed to disentangle the various mechanisms (e.g. passive sampling, provision of more food, more niche space, flood disturbance refugia) by which bryophyte biomass affects stream macroinvertebrates.  相似文献   
5.
1. Few extensive lotic studies have examined patterns in the biodiversity of non‐biting midges (Diptera: Chironomidae) along major environmental gradients. Our aim was to fill this gap by describing patterns in species diversity, assemblage composition and distributions of midges across a boreal drainage basin. 2. We found that the diversity of midges, as measured by rarefied species richness, Fisher’s α and Pielou’s evenness, responded positively to stream size in regression analysis. By contrast, species density was most strongly correlated to a gradient in suspended solids and phosphorus in stream water, as well as macrophyte cover. Spatial variables were not significantly correlated with species diversity. 3. Midge assemblage composition was best explained by a model incorporating five composite environmental gradients in canonical correspondence analysis. The environmental gradients were stream size, macrophyte cover, alkalinity, nitrogen and suspended solids. Spatial variables did not overcome the effects of environmental gradients on assemblage composition. 4. Cluster analysis divided the 27 study sites into four groups with relatively similar midge assemblages. These groups were statistically significant in multi‐response permutation procedure, and 15 of the 49 midge taxa recorded varied significantly among the groups in indicator value analysis. Discriminant function analysis showed that stream size, macrophyte cover and habitat structure predicted 66.7% of sites into correct groups. 5. The information provided by the present analyses may be of considerable importance in conservation planning at the drainage basin level. The fact that species diversity and assemblage composition varied primarily along the stream size gradient suggests that sites belonging to the different size classes (first to fifth order) are needed to conserve the biodiversity of midges. The other environmental gradients should also be considered in conservation planning, because they explained significant amounts of variability in midge assemblage composition.  相似文献   
6.
Abstract 1. Current views in ecology emphasise that community structure is the sum of multiple processes, with imprints of both regional and local drivers. However, the degree to which stream insect assemblages are structured by spatial configuration (complying with the dispersal‐based neutral hypothesis) and local environmental features (complying with the niche‐based species sorting hypothesis) has not been rigorously examined based on surveys in multiple years. 2. Stream sites in a boreal drainage system were surveyed during three consecutive years and the relative contribution of spatial configuration and local environmental variables to aquatic insect assemblage structure (characterised by both abundance and presence–absence data) was assessed. Separate analyses were conducted for mayflies (Ephemeroptera), stoneflies (Plecoptera), caddisflies (Trichoptera), and non‐biting midges (Diptera: Chironomidae) in each year. 3. There were no relationships between the spatial location and local environmental features of streams in Mantel tests, facilitating exploration of their independent effects on assemblage structure. The study found virtually no effects of spatial location on stream insect assemblages across the study drainage system, as evidenced by Mantel tests and canonical correspondence analyses (CCA). The environmental variables were also rather weakly associated with assemblage structure, with the total amount of explained variation ranging from 9.8% to 31.7% in the CCAs. There were no appreciable differences in the amount of environment‐related explained variation in assemblage structure between mayflies, stoneflies, caddisflies, and midges, but some between‐year differences were noticeable in most insect groups. The environmental variables that were significantly related to assemblage structure exhibited some between‐group and between‐year variability. In general, patterns shown by abundance and presence–absence data were highly similar. 4. It appears that stream insect assemblages comply with the niche‐based species sorting hypothesis in the context of metacommunity ecology. In contrast, the absence of spatial structuring suggests that stream insect assemblages do not comply with the neutral hypothesis, being not strongly dispersal limited at the within‐drainage basin scale.  相似文献   
7.
1. Theory predicts that the stability of a community should increase with diversity. However, despite increasing interest in the topic, most studies have focused on aggregate community properties (e.g. biomass, productivity) in small‐scale experiments, while studies using observational field data on realistic scales to examine the relationship between diversity and compositional stability are surprisingly rare. 2. We examined the diversity–stability relationship of stream invertebrate communities based on a 4‐year data set from boreal headwater streams, using among‐year similarity in community composition (Bray–Curtis coefficient) as our measure of compositional stability. We related stability to species richness and key environmental factors that may affect the diversity–stability relationship (stream size, habitat complexity, productivity and flow variability) using simple and partial regressions. 3. In simple regressions, compositional stability was positively related to species richness, stream size, productivity and habitat complexity, but only species richness and habitat complexity were significantly related to stability in partial regressions. There was, however, a strong relationship between species richness and abundance. When abundance was controlled for through re‐sampling, stability was unrelated to species richness, indicating that sampling effects were the predominant mechanism producing the positive stability–diversity relationship. By contrast, the relationship between stability and habitat complexity (macrophyte cover) became even stronger when the influence of community abundance was controlled for. Habitat complexity is thus a key factor enhancing community stability in headwater streams.  相似文献   
8.
1. The distribution patterns of unicellular and multicellular organisms have recently been shown to differ profoundly, with the former probably being mostly cosmopolitan, whereas the latter are mostly restricted to certain regions. However, the within‐region distribution patterns of these two organism groups may be rather similar. 2. We predicted that the degree of regional occupancy in unicellular eukaryotes would be related to niche characteristics, dispersal ability and size, as has been found previously for multicellular organisms. The niche characteristics we considered were niche position, that measures marginality in species habitat distribution, and niche breadth, that measures amplitude in species habitat distribution. Niche characteristics were determined using Outlying Mean Index (OMI) analysis. 3. We found that the regional occupancy in our model group of unicellular eukaryotes, stream diatoms, was primarily a reflection of the niche position of a species or, more generally, habitat availability. Thus, non‐marginal species (i.e. species that occupied common habitat conditions across the region) tended to be more widely distributed than marginal species (i.e. species that were restricted to a limited range of rare habitat conditions). This finding was further supported by the general linear model, with niche position, niche breadth, maximum size and attachment mode as explanatory variables: niche position was by far the most important variable accounting for variability in regional occupancy, with significant amounts of additional variation related to niche breadth and maximum size of diatoms. 4. Thus, the degree of regional occupancy among unicellular eukaryotes may be primarily governed by habitat availability, supporting former findings for multicellular organisms.  相似文献   
9.
JANI HEINO 《Freshwater Biology》2005,50(9):1578-1587
1. Biodiversity–environment relationships are increasingly well‐understood in the context of species richness and species composition, whereas other aspects of biodiversity, including variability in functional diversity (FD), have received rather little rigorous attention. For streams, most studies to date have examined either taxonomic assemblage patterns or have experimentally addressed the importance of species richness for ecosystem functioning. 2. I examined the relationships of the functional biodiversity of stream macroinvertebrates to major environmental and spatial gradients across 111 boreal headwater streams in Finland. Functional biodiversity encompassed functional richness (FR – the number of functional groups derived from a combination of functional feeding groups and habit trait groups), FD – the number of functional groups and division of individuals among these groups, and functional evenness (FE – the division of individuals among functional groups). Furthermore, functional structure (FS) comprised the composition and abundance of functional groups at each site. 3. FR increased with increasing pH, with additional variation related to moss cover, total nitrogen, water colour and substratum particle size. FD similarly increased with increasing pH and decreased with increasing canopy cover. FE decreased with increasing canopy cover and water colour. Significant variation in FS was attributable to pH, stream width, moss cover, substratum particle size, nitrogen, water colour with the dominant pattern in FS being related to the increase of shredder‐sprawlers and the decrease of scraper‐swimmers in acidic conditions. 4. In regression analysis and redundancy analysis, variation in functional biodiversity was not only related to local environmental factors, but a considerable proportion of variability was also attributable to spatial patterning of environmental variables and pure spatial gradients. For FR, 23.4% was related to pure environmental effects, 15.0% to shared environmental and spatial effects and 8.0% to spatial trends. For FD, 13.8% was attributable to environmental effects, 15.2% to shared environmental and spatial effects and 5% to spatial trends. For FE, 9.0% was related to environmental variables, 12.7% to shared effects of environmental and spatial variables and 4.5% to spatial variables. For FS, 13.5% was related to environmental effects, 16.9% to shared environmental and spatial effects and 15.4% to spatial trends. 5. Given that functional biodiversity should portray variability in ecosystem functioning, one might expect to find functionally rather differing ecosystems at the opposite ends of major environmental gradients (e.g. acidity, stream size). However, the degree to which variation in the functional biodiversity of stream macroinvertebrates truly portrays variability in ecosystem functioning is difficult to judge because species traits, such as feeding roles and habit traits, are themselves strongly affected by the habitat template. 6. If functional characteristics show strong responses to natural environmental gradients, they also are likely to do so to anthropogenic environmental changes, including changes in habitat structure, organic inputs and acidifying elements. However, given the considerable degree of spatial structure in functional biodiversity, one should not expect that only the local environment and anthropogenic changes therein are responsible for this variability. Rather, the spatial context, as well as natural variability along environmental gradients, should also be explicitly considered in applied research.  相似文献   
10.
1. Many studies have addressed either community models (e.g. Clementsian versus Gleasonian gradients) or assembly rules (e.g. nestedness, checkerboards) for higher plant and animal communities, but very few studies have examined different non‐random distribution patterns simultaneously with the same data set. Even fewer studies have addressed generalities in the distribution patterns of unicellular organisms, such as diatoms. 2. We studied non‐randomness in the spatial distribution and community composition of stream diatoms. Our data consisted of diatom surveys from 47 boreal headwater streams and small rivers in northern Finland. Our analytical approaches included ordinations, cluster analysis, null model analyses, and associated randomisation tests. 3. Stream diatom communities did not follow discrete Clementsian community types, where multiple species occur exclusively in a single community type. Rather, diatom species showed rather individualistic responses, leading to continuous Gleasonian variability in community composition. 4. Although continuous variability was the dominating pattern in the data, diatoms also showed significant nestedness and less overlap in species distribution than expected by chance. However, these patterns were probably only secondary signals from species’ individualistic responses to the environment. 5. Although unicellular organisms, such as diatoms, differ from multicellular organisms in several biological characteristics, they nevertheless appear to show largely similar non‐random distribution patterns previously found for higher plants and metazoans.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号