首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   310篇
  免费   14篇
  2024年   1篇
  2022年   2篇
  2021年   2篇
  2019年   3篇
  2018年   7篇
  2017年   7篇
  2016年   6篇
  2015年   9篇
  2014年   12篇
  2013年   6篇
  2012年   18篇
  2011年   12篇
  2010年   11篇
  2009年   8篇
  2008年   11篇
  2007年   15篇
  2006年   11篇
  2005年   11篇
  2004年   12篇
  2003年   14篇
  2002年   18篇
  2001年   7篇
  2000年   10篇
  1999年   11篇
  1998年   4篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1991年   3篇
  1990年   4篇
  1989年   15篇
  1988年   11篇
  1987年   12篇
  1986年   2篇
  1985年   10篇
  1984年   1篇
  1983年   3篇
  1982年   5篇
  1981年   8篇
  1980年   1篇
  1979年   1篇
  1978年   3篇
  1976年   4篇
  1975年   2篇
  1974年   1篇
排序方式: 共有324条查询结果,搜索用时 15 毫秒
1.
T Okabe  K Sobue 《FEBS letters》1987,213(1):184-188
A new 84/82 kDa calmodulin-binding protein, which also interacts with actin filaments, tubulin and spectrin, was purified from the bovine synaptosomal membrane. The binding of calmodulin to this protein was Ca2+-dependent, and was inhibited by trifluoperazine, the association constant being calculated to be 2.2 X 10(6) M-1. Maximally, 1 mol of calmodulin bound to 1 mol of the purified protein. This protein was phosphorylated by both kinase II (Ca2+- and calmodulin-dependent kinase) and cyclic AMP-dependent kinase. In addition, antibody against this protein was demonstrated to have an immunological crossreactivity with synapsin I in the synaptosomal membrane.  相似文献   
2.
The interactions of actin filaments with actin-binding protein (filamin) and caldesmon under the influence of tropomyosin were studied in detail using falling-ball viscometry, binding assay and electron microscopy. Caldesmon decreased the binding constant of filamin with F-actin. In contrast, the maximum binding ability of filamin to F-actin was decreased by tropomyosin. The filamin-induced gelation of actin filaments was inhibited by caldesmon. Tropomyosin also inhibited this gelation. The effect of caldesmon became stronger under the influence of tropomyosin. Furthermore, both caldesmon and tropomyosin additionally decreased the filamin binding to F-actin. From these results, caldesmon and tropomyosin appeared to influence filamin binding to F-actin with different modes of actin. In addition, there was no sign of direct interactions between filamin, caldesmon and tropomyosin as judged from gel filtration. Under the influence of caldesmon and tropomyosin, calmodulin conferred Ca2+ sensitivity on the filamin-induced gelation of actin filaments.  相似文献   
3.
Dermatan sulfate proteoglycan chains were detected in tissue sections treated with chondroitin B-lyase (0.01 units/ml) in 20 mM Tris-HCl (pH 8.0) for 1 hr, followed by staining with antibody 9A2 specific for unsaturated uronic acid coupled to N-acetylgalactosamine-4 sulfate. In contrast, after treatment with chondroitin B-lyase, no positive staining was observed with antibodies 3B3 and 1B5 which react to the unsaturated uronic acid coupled to N-acetylgalactosamine 6-sulfate and unsaturated uronic acid coupled to N-acetylgalactosamine, respectively. The distribution of dermatan sulfate thus revealed was confirmed by comparison with that found by monoclonal antibody 6B6 which reacts with small proteoglycans carrying dermatan sulfate side chains. The localization of positive staining in fibrous connective tissues was almost identical with these two procedures.  相似文献   
4.
With fluorescence and interference reflection microscopy (IRM), we compared the regional distribution of calspectin, its interacting proteins (nonerythroid protein 4.1 and calpactin), alpha-actinin, and vinculin in NRK cells and their avian sarcoma virus (ASV)- or temperature-sensitive (ts) Rous sarcoma virus (RSV)-transformed cells. The localization of these cytoskeletal proteins was determined with the specific antibodies. In NRK cells, alpha-actinin and vinculin were concentrated at adhesion plaques. By contrast, calspectin was distributed throughout the cytoplasm, but not concentrated at adhesion plaques. In ASV- and ts RSV-transformed cells, all three cytoskeletal proteins were concentrated at dot structures representing cellular feet. Nonerythroid protein 4.1 and calpactin were diffusely distributed throughout the cytoplasm of NRK cells and their transformed counterparts. In the case of calpactin, a part of this protein was excluded near regions of the terminal ends of stress fibers. These two proteins did not show the restricted location at the dot structures of transformed cells. From these findings, it is apparent that the accumulation of calspectin into dot structures is a specific event for cell transformation induced by the src protein.  相似文献   
5.
Summary The immunohistochemical localization of large proteoglycan and small proteoglycan was observed, using antibodies 2B1 and 6B6 (Sobueet al., 1988, 1989a), in fetal and adult pancreas and biliary system as well as in tumour tissues, obtained from 11 autopsies and 74 biopsies. The distribution of chondroitin 4- and 6-sulphate side chains, type I and IV collagen and elastin were also studied. In adult pancreas and all the biliary tracts examined, periductal fibrous tissues consisted mainly of dermatan sulphate small proteoglycan with networks of fibrous elements, which were composed of large proteoglycan, elastin, type I collagen and type IV collagen. In the interstitial components of cystadenoma of pancreas and biliary duct carcinoma, similar small proteoglycan-rich components were relatively abundant, although large proteoglycan was present in much larger amounts than that in non-neoplastic adult tissues. In some cholangiomas, the extra-and intracellular hyaline globules formed by the carcinoma cells were found to contain chondroitin sulphate large proteoglycan, laminin and fibronectin.The distribution of proteoglycans was observed to be different in the arterial walls of the interlobular tissues of the adult and the fetal pancreas. The biological significance of large and small proteoglycans in the interstitial connective tissues was discussed.  相似文献   
6.
The calspectin/actin complex extracted from the bovine brain membrane crosslinks F-actin, resulting in the increasing viscosity of F-actin determined by low-shear viscometry. We demonstrated the presence of a protein factor in this complex, which regulated the calspectin-F-actin interaction in a Ca2+- and calmodulin-dependent manner. Erythrocyte protein 4.1, but not synapsin I, mimics the function of this brain factor using a reconstitution system including purified calspectin, calmodulin and F-actin. In the brain complex, the Mr 120,000 and the Mr 80,000/77,000 polypeptides were detected to crossreact with anti-protein 4.1 antibody.  相似文献   
7.
In a previous study, we identified a new mammalian myosin heavy chain, termed myosin I heavy chain-like protein (MIHC), by molecular cloning of a bovine intestinal cDNA clone. In this investigation, we examined the relationship between MIHC and the 110-kDa intestinal brush-border protein, which possesses a myosin-like ATPase activity. We raised antibodies against a chemically synthesized oligopeptide representing a part of the MIHC sequence. These antibodies reacted specifically in immunoblots with the 110-kDa protein in both purified 110-kDa protein-calmodulin complex and crude microvillar protein extracts. Staining of tissue sections with these antibodies was specifically localized to the brush-border microvilli of small intestines, indicating an identical cellular localization for both MIHC and the 110-kDa protein. Furthermore, analysis of the MIHC sequence revealed two putative calmodulin-binding sites, which is consistent with the fact that the 110-kDa protein forms a complex with calmodulin. These results strongly support the conclusion that MIHC is identical to the 110-kDa protein and suggest that not only the conventional myosin system but also the MIHC (110-kDa protein)-calmodulin complex may play an important role in ATP-dependent and Ca2+-induced brush-border contraction.  相似文献   
8.
Abstract: Laminin A, B1, and B2 chain mRNA levels in degenerating and regenerating mouse sciatic nerves were examined using northern blot analysis. In normal intact nerves, B1 and B2 mRNA steady-state levels were high, but when the nerves were crushed, the steady-state levels of B1 and B2 mRNA per milligram wet tissue weight of the distal segments of the nerves increased five- to eightfold over that of control levels as the total RNA and β-actin mRNA levels increased, suggesting that these increases were the consequence of Schwann cell proliferation after axotomy. When the steady-state levels of B1 and B2 mRNA were normalized as the ratio to total RNA or β-actin mRNA levels, however, they drastically decreased to about 20% of the normal nerve levels in the nerve segments distal to both the crush and transaction sites 1 day after injury. In the crushed nerves, B1 and B2 mRNA levels gradually increased as the regenerating nerves arrived at the distal segments and reestablished normal axon–Schwann cell contact, and then returned to normal levels on the 21 st day. In the transected nerves, where Schwann cells continued to be disconnected from axons, both B1 and B2 mRNA levels remained low. Cultured Schwann cells expressed detectable levels of B1 and B2 chain mRNA which significantly increased when the cells were cocultured with sensory neurons. However, mRNA for A chain was not detectable in the normal, axotomized nerves or in cultured Schwann cells. These data indicate that Schwann cells express laminin B1 and B2 chain mRNA that are up-regulated by axonal or neuronal contact, but they do not express A chain mRNA.  相似文献   
9.
Mechanism of antiviral activity of 1-β-d -arabinofuranosyl-E-5-(2-bromovinyl)uracil (BV-araU) against the YSR strain of varicella-zoster virus (VZV), which is a mutant derived from the wild YS strain and is completely deficient in viral thymidine kinase (TK), was searched in comparison with antiviral activity of other thymidine analogues, guanosine analogue and thymidylate synthase (TS) inhibitor in human embryo lung fibroblast cells. Thymidine analogues, such as BV-araU, 5-iododeoxyuridine (IUDR), 1-β-d -arabinofuranosylthymine (araT), and guanosine analogue, such as 9-(2-hydroxyethoxymethyl)guanine (ACV), showed higher antiviral activity to the YS strain than to the YSR strain. Though, BV-araU also had the antiviral activity of a microgram level against the YSR strain. In contrast to these results, TS inhibitor, 5-fluorodeoxyuridine (FUDR), had higher antiviral activity to the YSR strain than to the YS strain. Highly synergistic antiviral activities of FUDR to the YS strain and the YSR strain were observed in combination with IUDR, araT, or ACV. However, weakly synergistic or additive inhibition to the YSR strain was shown in combination of BV-araU and FUDR, in spite of highly synergistic effect of this combination to the YS strain. The viral and cellular TS activity was partially inhibited by BV-araU monophosphate, but not by BV-araU. These results indicate that BV-araU is converted into BV-araU monophosphate by cellular TK, and the inhibition of TS activity by BV-araU monophosphate in the YSR strain-infected cells results in the suppression of viral replication.  相似文献   
10.
The virulence of thymidine kinase-negative herpes simplex virus type 1 (HSV-1; VRTK? strain) and type 2 (HSV-2; UWTK? strain) was studied in comparison with that of their parental strains (VR-3 and UW-268, respectively) in an encephalitis model of adult (4-week-old) and newborn (3-day-old) mice. Viral thymidine kinase (TK) activity was essential for the maximum expression of virulence of HSV-1, because the 50% lethal dose (LD50) of VRTK? was 60 times higher than that of VR-3 in the brains of newborn mice expressing high levels of cellular TK activity. However, the UWTK? strain showed the same virulence as the parental strain in newborn mice, despite the lack virulence in adults, suggesting that replication of the UWTK? strain was completely supported by cellular TK activity. This difference in the role of viral and cellular TKs for virus growth between HSV-1 and HSV-2 was confirmed with the one-step growth of virus strains in L-M and L-M(TK?) cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号