首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   983篇
  免费   90篇
  国内免费   2篇
  2022年   4篇
  2021年   8篇
  2020年   5篇
  2019年   8篇
  2018年   9篇
  2017年   9篇
  2016年   7篇
  2015年   13篇
  2014年   19篇
  2013年   84篇
  2012年   35篇
  2011年   50篇
  2010年   31篇
  2009年   35篇
  2008年   57篇
  2007年   78篇
  2006年   68篇
  2005年   64篇
  2004年   68篇
  2003年   69篇
  2002年   57篇
  2001年   18篇
  2000年   19篇
  1999年   17篇
  1998年   15篇
  1997年   12篇
  1996年   15篇
  1995年   10篇
  1994年   11篇
  1993年   7篇
  1992年   16篇
  1991年   14篇
  1990年   13篇
  1989年   11篇
  1988年   3篇
  1987年   7篇
  1986年   10篇
  1985年   3篇
  1984年   10篇
  1983年   10篇
  1982年   13篇
  1981年   10篇
  1980年   13篇
  1979年   6篇
  1977年   6篇
  1976年   4篇
  1973年   6篇
  1972年   2篇
  1969年   2篇
  1967年   2篇
排序方式: 共有1075条查询结果,搜索用时 281 毫秒
1.
Transparent gels containing about 2% protein were obtained by mixing alkaline dope solution of 7S or 11S soybean proteins with alcohol. The 7S component showed the ability to form a stronger gel than the 11S. This phenomenon depended on pH and alcohol concentration. In 66 % ethanol, the viscosity of the 7S and 11S reached maxima at pH 11.4 and 11.2, respectively. Above these pH levels where further unfolding and dissociation into subunits of the protein molecules occur, the viscosity decreased rather. The effectiveness of alcohol to increase viscosity increased in the order; n-butanol < tert-butanol < n-propanol < iso-propanol < ethanol < methanol. Alcohols having minor hydrophobicity were more effective for increasing viscosity, but ethylene glycol was ineffective. The addition of NaCl or 2-mercaptoethanol to ethanol-mixed alkaline dope solutions resulted in the remarkable increment of the viscosity, especially for the 7S.  相似文献   
2.
Three new mutants of Escherichia coli showing thermosensitive cell growth and division were isolated, and the mutations were mapped to the mra region at 2 min on the E. coli chromosome map distal to leuA. Two mutations were mapped closely upstream of ftsI (also called pbpB), in a region of 600 bases; the fts-36 mutant showed thermosensitive growth and formed filamentous cells at 42 degrees C, whereas the lts-33 mutant lysed at 42 degrees C without forming filamentous cells. The mutation in the third new thermosensitive, filament-forming mutant, named ftsW, was mapped between murF and murG. By isolation of these three mutants, about 90% of the 17-kilobase region from fts-36-lts-33 to envA could be filled with genes for cell division and growth, and the genes could be aligned.  相似文献   
3.
Three trans-clerodane diterpenoids, pilosanol A, B and C, the last compound being a glucoside, have been isolated from the roots of Portulaca pilosa. They show a marked contrast in skeletal type with the constituents of aerial part. Evolutionary changes in the biosynthetic abilities of Portulaca species is discussed.  相似文献   
4.
5.
Summary We have isolated and studied the organization ofStreptomyces hygroscopicus genes responsible for the biosynthesis of the antibiotic herbicide bialaphos. Bialaphos production genes were cloned from genomic DNA using a plasmid vector (pIJ702). Three plasmids were isolated which restored productivity toS. hygroscopicus mutants blocked at different steps of the biosynthetic pathway. Subcloning experiments using other nonproducing mutants showed that four additional bialaphos production genes were also contained on these plasmids. A gene conferring resistance to bialaphos, which was independently cloned using the plasmid vector pIJ61, and an antibiotic-sensitive host (S. lividans), was also linked to the production genes. Cosmids were isolated which defined the location of these genes in a 16 kb cluster.  相似文献   
6.
A novel penicillin-binding protein, PBP-2' (Mr about 75,000), is known to be induced in excessively large amount by most beta-lactam compounds in cells of a clinically isolated strain of Staphylococcus aureus, TK784, that is highly resistant to beta-lactams and also most other antibiotics. This protein has very low affinities to most beta-lactam compounds and has been supposed to be the cause of the resistance of the cells to beta-lactams. A 14-kilobase DNA fragment was isolated from the cells that carried the gene encoding this penicillin-binding protein and also a genetically linked marker that is responsible for the resistance to tobramycin. This DNA was cloned on plasmid pACYC184 and was shown to cause both production of PBP-2' and resistance to tobramycin in Escherichia coli cells. However, the formation of PBP-2' in E. coli was only moderate and was independent of normal inducer beta-lactams. The PBP-2' formed in the E. coli cells showed slow kinetics of binding to beta-lactams similar to that of PBP-2' formed in the original S. aureus cells and gave a similar pattern of peptides to the latter when digested with the proteolytic V8 enzyme of S. aureus.  相似文献   
7.
Penicillin-binding protein (PBP)-2 and the RodA protein are known to function in determining the rod shape of Escherichia coli cells. Peptidoglycan biosynthetic reactions that required these two proteins were demonstrated in the membrane fraction prepared from an E. coli strain that overproduced both of these two proteins and which lacked PBP-1B activity (the major peptidoglycan synthetase activity in the normal E. coli membranes). The cross-linked peptidoglycan was synthesized from UDP-N-acetylmuramylpentapeptide and UDP-N-acetylglucosamine in the presence of a high concentration of cefmetazole that inhibited all of PBPs except PBP-2. The peptidoglycan was synthesized via a lipid intermediate and showed up to 30% cross-linking. The cross-linking reaction was strongly inhibited by the amidinopenicillin, mecillinam, and by other beta-lactam antibiotics that have a high affinity for PBP-2, but not by beta-lactams that had very low affinity for PBP-2. The formation of peptidoglycan required the presence of high levels of both PBP-2 and the RodA protein in the membranes, but it is unclear which of the two proteins was primarily responsible for the extension of the glycan chains (transglycosylation). However, the sensitivity of the cross-linking reaction to specific beta-lactam antibiotics strongly suggested that it was catalyzed by PBP-2. The transglycosylase activity of the membranes was sensitive to enramycin and vancomycin and was unusual in being stimulated greatly by a high concentration of a chelating agent.  相似文献   
8.
9.
The localization of the active site of penicillin-binding protein 5 from the dacA mutant of Escherichia coli strain TMRL 1222 has been determined. The protein was purified to homogeneity and labeled with [14C] penicillin G. The labeled protein was digested with trypsin, and the active site tryptic peptide was purified by a combination of gel filtration and high-pressure liquid chromatography. Sequencing of the purified [14C]penicilloyl peptide yielded the sequence Arg-Asp-Pro-Ala-Ser-Leu-Thr-Lys, which corresponds to residues 40-47 of the gene sequence (Broome-Smith, J., Edelman, A., and Spratt, B. G. (1983) in The Target of Penicillin (Hakenbeck, R., Holtje, J.-V., and Labischinski, H., eds) pp. 403-408, Walter de Gruyter, Berlin). The catalytic amino acid residue that forms a covalent bond with penicillin was identified by treating the purified [14C]penicilloyl peptide with a mixture of proteases and then separating the radioactive products using high-pressure liquid chromatography. Analysis of the radioactive peaks by amino acid analysis confirmed that it is the serine residue that reacts with the beta-lactam ring of penicillin.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号