首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
  2014年   1篇
  2002年   2篇
  2001年   4篇
  2000年   1篇
  1998年   1篇
  1993年   2篇
  1991年   1篇
  1983年   1篇
  1980年   2篇
  1977年   2篇
  1976年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有20条查询结果,搜索用时 234 毫秒
1.
Northern red oak (Quercus rubra L.) leaves were shown to mature progressively from base to tip of the lamina based on studies of growth rates, anatomical differentiation, and 14C-transport. Lamina expansion in both length and width ceased in the basal quarter of the leaf before the apical quarter. Cell expansion and tissue differentiation were more advanced at the base than at the tip of leaves at 10%–20% of full expansion. Physiological data supported the morphological and anatomical data. Sink activity was examined by following the distribution of 14C imported into sink leaves with direct vascular connections to the source leaf to assure uniform assimilate supply to the sink leaves. Leaves approximately 50% of full expansion imported five to seven times more l4C-assimilates into the tip than into the base of the leaf, consistent with continued sink activity in the leaf tip after import by the leaf base has ceased. Transport of 14C from portions of the leaf, indicating source activity, occurred first in the basal portion of the lamina. The base functioned as a source at approximately 40% of full expansion; the tip, at approximately 60%. Thus, northern red oak displays an acropetal pattern of leaf expansion and differentiation, unlike the more typical pattern of basipetal leaf development defined in many other dicotyledonous genera with simple leaves.  相似文献   
2.
The topologic arrangement of petiolar bundles varies within the length of the cottonwood petiole. Each petiolar bundle is formed by the subdivision and aggregation of acropetally differentiating subsidiary bundles in a predictable pattern. The subsidiary bundles provide vascular continuity between the stem and specific portions of the leaf lamina. Spot-labeling of individual veins with 14CO2, freeze substitution, and microautoradiography were used to establish the relation between the secondary veins of the lamina and the vasculature of the petiole. Within the petiole vasculature each subsidiary bundle was continuous with a specific portion of the lamina and seemed to have a separate function. Subsidiary bundles continuous with the central leaf trace were closely related functionally to the tip region of the lamina, while the subsidiary bundles continuous with the lateral leaf traces were functionally related to the middle and basal portions of the lamina.  相似文献   
3.
We investigated the interaction of elevated CO2 and/or (Ozone) O3 on the occurrence and severity of aspen leaf rust (Melampsora medusae Thuem. f. sp. tremuloidae) on trembling aspen (Populus tremuloides Michx.). Furthermore, we examined the role of changes in leaf surface properties induced by elevated CO2 and/or O3 in this host–pathogen interaction. Three‐ to five‐fold increases in levels of rust infection index were found in 2 consecutive years following growing‐season‐long exposures with either O3 alone or CO2 + O3 depending on aspen clone. Examination of leaf surface properties (wax appearance, wax amount, wax chemical composition, leaf surface and wettability) suggested significant effects by O3 and CO2 + O3. We conclude that elevated O3 is altering aspen leaf surfaces in such a way that it is likely predisposing the plants to increased infection by aspen leaf rust.  相似文献   
4.
Leaf photosynthesis (Ps), nitrogen (N) and light environment were measured on Populus tremuloides trees in a developing canopy under free‐air CO2 enrichment in Wisconsin, USA. After 2 years of growth, the trees averaged 1·5 and 1·6 m tall under ambient and elevated CO2, respectively, at the beginning of the study period in 1999. They grew to 2·6 and 2·9 m, respectively, by the end of the 1999 growing season. Daily integrated photon flux from cloud‐free days (PPFDday,sat) around the lowermost branches was 16·8 ± 0·8 and 8·7 ± 0·2% of values at the top for the ambient and elevated CO2 canopies, respectively. Elevated CO2 significantly decreased leaf N on a mass, but not on an area, basis. N per unit leaf area was related linearly to PPFDday,sat throughout the canopies, and elevated CO2 did not affect that relationship. Leaf Ps light‐response curves responded differently to elevated CO2, depending upon canopy position. Elevated CO2 increased Pssat only in the upper (unshaded) canopy, whereas characteristics that would favour photosynthesis in shade were unaffected by elevated CO2. Consequently, estimated daily integrated Ps on cloud‐free days (Psday,sat) was stimulated by elevated CO2 only in the upper canopy. Psday,sat of the lowermost branches was actually lower with elevated CO2 because of the darker light environment. The lack of CO2 stimulation at the mid‐ and lower canopy was probably related to significant down‐regulation of photosynthetic capacity; there was no down‐regulation of Ps in the upper canopy. The relationship between Psday,sat and leaf N indicated that N was not optimally allocated within the canopy in a manner that would maximize whole‐canopy Ps or photosynthetic N use efficiency. Elevated CO2 had no effect on the optimization of canopy N allocation.  相似文献   
5.
Leaf gas exchange parameters and the content of ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco) in the leaves of two 2‐year‐old aspen (Populus tremuloides Michx.) clones (no. 216, ozone tolerant and no. 259, ozone sensitive) were determined to estimate the relative stomatal and mesophyll limitations to photosynthesis and to determine how these limitations were altered by exposure to elevated CO2 and/or O3. The plants were exposed either to ambient air (control), elevated CO2 (560 p.p.m.) elevated O3 (55 p.p.b.) or a mixture of elevated CO2 and O3 in a free air CO2 enrichment (FACE) facility located near Rhinelander, Wisconsin, USA. Light‐saturated photosynthesis and stomatal conductance were measured in all leaves of the current terminal and of two lateral branches (one from the upper and one from the lower canopy) to detect possible age‐related variation in relative stomatal limitation (leaf age is described as a function of leaf plastochron index). Photosynthesis was increased by elevated CO2 and decreased by O3 at both control and elevated CO2. The relative stomatal limitation to photosynthesis (ls) was in both clones about 10% under control and elevated O3. Exposure to elevated CO2 + O3 in both clones and to elevated CO2 in clone 259, decreased ls even further – to about 5%. The corresponding changes in Rubisco content and the stability of Ci/Ca ratio suggest that the changes in photosynthesis in response to elevated CO2 and O3 were primarily triggered by altered mesophyll processes in the two aspen clones of contrasting O3 tolerance. The changes in stomatal conductance seem to be a secondary response, maintaining stable Ci under the given treatment, that indicates close coupling between stomatal and mesophyll processes.  相似文献   
6.
7.
The leaf plastochron index (LPI) was used to interpret the anatomical changes during leaf ontogeny in the developing leaf zone of young cottonwood trees and to relate leaf anatomical structure to physiological function. The lamina tip matured precociously with respect to both structure and function. Below the lamina tip the intercellular spaces, stomates, and minor veins matured basipetally, while the major veins developed acropetally. Ontogenetically, maturation progressed from LPI –1.0, which was anatomically immature except for its lamina tip, to the first fully expanded leaf at LPI 6.0, which was anatomically mature. Physiological maturity also occurred at LPI 6.0, thus signifying a transition with respect to both structure and function. By evaluating the anatomical observations in conjunction with physiological data collected at comparable LPI's in other experiments, it could be demonstrated that anatomical development was a limiting factor in photosynthesis and translocation of assimilates.  相似文献   
8.
Coleman  M. D.  Dickson  R. E.  Isebrands  J. G. 《Plant and Soil》2000,225(1-2):129-139
Tree root activity, including fine-root production, turnover and metabolic activity are significant components of forest productivity and nutrient cycling. Differences in root activity among forest types are not well known. A 3-year study was undertaken in red pine (Pinus resinosa Ait.) and hybrid poplar (Populus tristis X P. balsamifera cv `Tristis no. 1') plantations to compare belowground root dynamics. We measured fine-root production, mortality and standing crop, as well as soil CO2 efflux. Pine fine-root production was only 2.9% of that of poplar during three years; 85 pine roots were observed in minirhizotron tubes compared with 4088 poplar roots. Live-root density oscillated seasonally for both species with late winter minimum and autumn maximum. Poplar reached constant maximum live-root length within the first growing season, but pine continued to increase observed fine-root length for three growing seasons. Within the first 100 days following initial appearance, 22% of the pine roots disappeared and 38% of the poplar roots disappeared. Median fine-root longevity of pine was 291 days compared with 149 days for poplar roots. Fine-root longevity increased with depth in the soil, and was greater for roots with initial diameter >0.5 mm. The probability of poplar root death from late February to May was more than three times that in any other season, regardless of root age. Despite the greater poplar root production and live-root length, fine-root biomass and soil CO2 efflux was greater in pine. Greater metabolic activity in the pine stand may be due to greater fine-root biomass or greater heterotrophic respiration. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
9.
Development of the Populus leaf is presented as a model system to illustrate the sequence of events that occur during the sink to source transition. A Populus leaf is served by three leaf traces, each of which consists of an original procambial trace bundle that differentiates acropetally and continuously from more mature procambium in the stem and a complement of subsidiary bundles that differentiates bidirectionally from a leaf basal meristem. During development these subsidiary bundles maintain continuity through the meristematic region of the node. The basipetally developing subsidiary bunles form phloem bridges that serve to integrate adjacent leaf traces of the stem vasculature. Distal to the node the acropetally developing bundles from all three leaf traces are reoriented in a precise and orderly sequence to form tiers of petiolar bundles. These tiers of bundles extend into the midrib where bundles diverge at intervals as the major lateral veins. The dorsal-most tier of bundles extends to the lamina tip and each successive tier of bundles contributes to lateral veins situated more proximally in the lamina. Although the midrib and the major vein system differentiate acropetally in the lamina, they mature basipetally. Maturation of the mesophyll and other lamina tissues also mature basipetally. As a consequence of the basi-petal maturation process, the lamina tip matures very early and begins exporting photosynthates while the lamina base is still importing from other leaves. The transition of a leaf from sink to source status must therefore be considered as a progression of structural and functional events that occur in synchrony.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号