首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   2篇
  2021年   2篇
  2013年   2篇
  2012年   4篇
  2011年   4篇
  2009年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  1999年   1篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1991年   1篇
  1990年   1篇
  1976年   1篇
  1972年   2篇
  1967年   1篇
  1961年   2篇
排序方式: 共有33条查询结果,搜索用时 15 毫秒
1.
Among the different subtypes of Ehlers-Danlos syndrome (EDS), the dominant types I–III have, so far, been uninformative biochemically and molecular genetically, and diagnostic problems with subgroup boundaries often arise. We have investigated the ultrastructural pattern of connective tissue macromolecules in skin biopsy specimens of some 85 patients aged 4 months-54 years who exhibit clinical symptoms or the suspicion of EDS I–IV. Based on the differential features of collagen fibrils and ground substance material, four distinct groups could be established. Group I (clinically EDS type I) showed disorganized collagen bundles and dense aggregations of collagen fibrils with bizarre shapes. Group II (clinically varying from EDS types I–III) revealed collagen bundles that regularly contained numerous “composite collagen fibrils” with enlarged “flower-like” cross-sections and rope-like longitudinal sections, often associated with increased amounts of matrix substances in the form of electron-dense irregular strands and filaments in a branched network. Group III (clinically EDS types II–III) presented smaller isolated collagen flowers and ropes associated with excessive filamentous ground substance material and flocculent material. Group IV (with clinical symptoms of EDS type IV) had a dermis thinned to one third of the normal and a reduced number of collagen bundles with small diameter fibrils. In 13 patients, the abnormal ultrastructural dermal architecture did not coincide with any of these four groups or with the pattern of any other inherited connective tissue disorder. In 16 additional patients with mostly mild clinical symptoms, such as muscle weakness and small joint hyperlaxity, no ultrastructural aberrations could be found. Even though the primary defects underlying the respective aberration of the collagen fibrils are still unknown, the differential ultrastructural changes of the collagen fibrils together with clinical symptoms should, as in other heterogeneous genetic disorders, facilitate the (provisional?) classification of EDS and permit the diagnosis of individual cases.  相似文献   
2.
3.
Endonuclease III (Nth) enzyme from Escherichia coli is involved in base excision repair of oxidised pyrimidine residues in DNA. The Schizosaccharomyces pombe Nth1 protein is a sequence and functional homologue of E. coli Nth, possessing both DNA glycosylase and apurinic/apyrimidinic (AP) lyase activity. Here, we report the construction and characterization of the S. pombe nth1 mutant. The nth1 mutant exhibited no enhanced sensitivity to oxidising agents, UV or gamma-irradiation, but was hypersensitive to the alkylating agent methyl methanesulphonate (MMS). Analysis of base excision from DNA exposed to [3H]methyl-N-nitrosourea showed that the purified Nth1 enzyme did not remove alkylated bases such as 3-methyladenine and 7-methylguanine whereas methyl-formamidopyrimidine was excised efficiently. The repair of AP sites in S. pombe has previously been shown to be independent of Apn1-like AP endonuclease activity, and the main reason for the MMS sensitivity of nth1 cells appears to be their lack of AP lyase activity. The nth1 mutant also exhibited elevated frequencies of spontaneous mitotic intrachromosomal recombination, which is a phenotype shared by the MMS-hypersensitive DNA repair mutants rad2, rhp55 and NER repair mutants rad16, rhp14, rad13 and swi10. Epistasis analyses of nth1 and these DNA repair mutants suggest that several DNA damage repair/tolerance pathways participate in the processing of alkylation and spontaneous DNA damage in S. pombe.  相似文献   
4.
Mutagenic and cytotoxic apurinic/apyrimidinic (AP) sites are among the most frequent lesions in DNA. Repair of AP sites is initiated by AP endonucleases and most organisms possess two or more of these enzymes. Saccharomyces cerevisiae has AP endonuclease 1 (Apn1) as the major enzymatic activity with AP endonuclease 2 (Apn2) being an important backup. Schizosaccharomyces pombe also encodes two potential AP endonucleases, and Apn2 has been found to be the main repair activity, while Apn1 has no, or only a limited role in AP site repair. Here we have identified a new 5' exon (exon 1) in the apn1 gene and show that the inactivity of S. pombe Apn1 is due to a nonsense mutation in the fifth codon of this new exon. Reversion of this mutation restored the AP endonuclease activity of S. pombe Apn1. Interestingly, the apn1 nonsense mutation was only found in laboratory strains derived from L972 h(-) and not in unrelated isolates of S. pombe. Since all S. pombe laboratory strains originate from L972 h(-), it appears that all experiments involving S. pombe have been conducted in an apn1(-) mutant strain with a corresponding DNA repair deficiency. These observations have implications both for future research in S. pombe and for the interpretation of previously conducted epistatis analysis.  相似文献   
5.
6.
Genetic instability in Streptomyces species often involves large deletions sometimes accompanied by DNA amplification. Two such systems in Streptomyces lividans 66 involve the production of mutants sensitive to chloramphenicol and the production of mutants resistant to the galactose analogue 2-deoxygalactose, respectively. Overlapping cosmids were isolated that span the ca. 1 Mb region between the two amplifiable regions. The structure of the region was confirmed by restriction mapping using the rarely cutting enzymes AseI, BfrI and DraI and pulsed-field gel electrophoresis. The region contains a non-clonable gap flanked by inverted repeats; the structure is consistent with the presence of a physical gap, i.e. a linear chromosome.  相似文献   
7.
The Schizosaccharomyces pombe mag1 gene encodes a DNA repair enzyme with sequence similarity to the AlkA family of DNA glycosylases, which are essential for the removal of cytotoxic alkylation products, the premutagenic deamination product hypoxanthine and certain cyclic ethenoadducts such as ethenoadenine. In this paper, we have purified the Mag1 protein and characterized its substrate specificity. It appears that the substrate range of Mag1 is limited to the major alkylation products, such as 3-mA, 3-mG and 7-mG, whereas no significant activity was found towards deamination products, ethenoadducts or oxidation products. The efficiency of 3-mA and 3-mG removal was 5–10 times slower for Mag1 than for Escherichia coli AlkA whereas the rate of 7-mG removal was similar to the two enzymes. The relatively low efficiency for the removal of cytotoxic 3-methylpurines is consistent with the moderate sensitivity of the mag1 mutant to methylating agents. Furthermore, we studied the initial steps of Mag1-dependent base excision repair (BER) and genetic interactions with other repair pathways by mutant analysis. The double mutants mag1 nth1, mag1 apn2 and mag1 rad2 displayed increased resistance to methyl methanesulfonate (MMS) compared with the single mutants nth1, apn2 and rad2, respectively, indicating that Mag1 initiates both short-patch (Nth1-dependent) and long-patch (Rad2-dependent) BER of MMS-induced damage. Spontaneous intrachromosomal recombination frequencies increased 3-fold in the mag1 mutant suggesting that Mag1 and recombinational repair (RR) are both involved in repair of alkylated bases. Finally, we show that the deletion of mag1 in the background of rad16, nth1 and rad2 single mutants reduced the total recombination frequencies of all three double mutants, indicating that abasic sites formed as a result of Mag1 removal of spontaneous base lesions are substrates for nucleotide excision repair, long- and short-patch BER and RR.  相似文献   
8.
Thirty-two 2-deoxygalactose-resistant mutants with DNA amplifications were isolated from Streptomyces lividans 66 strains carrying plasmid pMT664, which carries an agarase gene (dagA) and IS466. Thirty-one of the mutants carried amplified DNA sequences from a 70 kb region about 300 kb from one end of the linear chromosome in this species. In 28 of the mutants, all the wild-type sequences between the amplified region and the start of the 30 kb inverted repeat that forms the chromosome end were deleted. Thus, there appeared to be loss of one chromosome end and its replacement by the DNA amplification. In some mutants there amplification of a previously characterised 5.7 kb sequence that lies about 600 kb from the other chromosome end was also noted.  相似文献   
9.
Highlights? Unflipped AP site stabilized by helix-hairpin-helix DNA glycosylase homolog Mag2 ? Nonenzymatic AP site recognition and DNA sculpting ? Sculpting of DNA conformation enhances substrate transfer between proteins  相似文献   
10.
The chronological life span of yeast, the survival of stationary (G0) cells over time, provides a model for investigating certain of the factors that may influence the aging of non-dividing cells and tissues in higher organisms. This study measured the effects of defined defects in the base excision repair (BER) system for DNA repair on this life span. Stationary yeast survives longer when it is pre-grown on respiratory, as compared to fermentative (glucose), media. It is also less susceptible to viability loss as the result of defects in DNA glycosylase/AP lyases (Ogg1p, Ntg1p, Ntg2p), apurinic/apyrimidinic (AP) endonucleases (Apn1p, Apn2p) and monofunctional DNA glycosylase (Mag1p). Whereas single BER glycosylase/AP lyase defects exerted little influence over such optimized G0 survival, this survival was severely shortened with the loss of two or more such enzymes. Equally, the apn1delta and apn2delta single gene deletes survived as well as the wild type, whereas a apn1delta apn2delta double mutant totally lacking in any AP endonuclease activity survived poorly. Both this shortened G0 survival and the enhanced mutagenicity of apn1delta apn2delta cells were however rescued by the over-expression of either Apn1p or Apn2p. The results highlight the vital importance of BER in the prevention of mutation accumulation and the attainment of the full yeast chronological life span. They also reveal an appreciable overlap in the G0 maintenance functions of the different BER DNA glycosylases and AP endonucleases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号