首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   125篇
  免费   11篇
  2021年   2篇
  2019年   1篇
  2018年   3篇
  2017年   3篇
  2016年   5篇
  2015年   3篇
  2014年   6篇
  2013年   6篇
  2012年   5篇
  2011年   4篇
  2010年   3篇
  2009年   6篇
  2008年   10篇
  2007年   2篇
  2006年   3篇
  2005年   7篇
  2004年   2篇
  2003年   6篇
  2002年   3篇
  2001年   4篇
  2000年   3篇
  1999年   4篇
  1998年   3篇
  1997年   2篇
  1996年   2篇
  1994年   1篇
  1992年   2篇
  1991年   1篇
  1990年   4篇
  1989年   1篇
  1988年   2篇
  1987年   4篇
  1985年   3篇
  1984年   7篇
  1983年   4篇
  1982年   2篇
  1980年   2篇
  1979年   3篇
  1977年   1篇
  1975年   1篇
排序方式: 共有136条查询结果,搜索用时 31 毫秒
1.
We have studied the appearance, distribution and regulation of acetylcholinesterase (AChE) and acetylcholine receptors (AChRs) in a mouse skeletal muscle cell line (C2), that was originally isolated and described by Yaffe & Saxel [54]. In culture, cells from this line form spontaneously contracting myotubes, with overshooting action potentials that are TTX-sensitive. After fusion of myoblasts into myotubes, there was a dramatic increase in the amount of both AChE and AChR. Three forms of AChE, distinguished by their sedimentation on sucrose gradients, were synthesized: 4-6S, 10S, and 16S. The 4-6S and 10S forms appeared 1 day after the cells began to fuse, whereas the 16S form appeared only 2 days after fusion began. Maximal levels of the 16S AChE form (25-30% of the total) were obtained by reducing the concentration of horse serum in the fusion medium. Prevention of myoblast fusion by reducing the calcium levels in the medium decreased the total AChE by 70%, and only the 4-6S form was synthesized. Blocking spontaneous contractile activity of the myotubes by tetrodotoxin (TTX) led to a 50% reduction in all three esterase forms. Thus, the 16S, or endplate form of AChE is not specifically regulated by electrical or contractile activity in the C2 cell line. After fusion the number of AChRs increased rapidly for 3-4 days and then stabilized. Receptor clusters, ranging from 10-30 micron in length, appeared 1 day after myoblast fusion began. When cells were grown in medium containing reduced Ca2+, the total number of AChRs was decreased by 20-50%. Reduction of Ca2+ after myotubes and AChR clusters had formed resulted in dispersal of AChR clusters. Inhibition of muscle contractions with TTX did not affect the number of AChRs or their distribution.  相似文献   
2.
The presence of acyl-CoA synthetase (EC 6.2.1.3) in peroxisomes and the subcellular distribution of beta-oxidation enzymes in human liver were investigated by using a single-step fractionation method of whole liver homogenates in metrizamide continuous density gradients and a novel procedure of computer analysis of results. Peroxisomes were found to contain 16% of the liver palmitoyl-CoA synthetase activity, and 21% and 60% of the enzyme activity was localized in mitochondria and microsomal fractions respectively. Fatty acyl-CoA oxidase was localized exclusively in peroxisomes, confirming previous results. Human liver peroxisomes were found to contribute 13%, 17% and 11% of the liver activities of crotonase, beta-hydroxyacyl-CoA dehydrogenase and thiolase respectively. The absolute activities found in peroxisomes for the enzymes investigated suggest that in human liver fatty acyl-CoA oxidase is the rate-limiting enzyme of the peroxisomal beta-oxidation pathway, when palmitic acid is the substrate.  相似文献   
3.
1. Xenopus laevis oocytes express endogenously two components of the cholinergic system: the muscarinic receptors and the acetylcholinesterase (AChE). 2. A biochemical characterization of this enzyme was carried out. 3. The results established that the activity found in the oocytes correspond to 'true' AChE with a molecular weight of 65,000 Da and a sedimentation coefficient of 3-4 S. 4. The enzyme aggregates in the absence of detergent suggesting that it possess an hydrophobic character; despite that, it is not sensitive to PIPLC. 5. A comparison with the Xenopus brain and muscle AChE shows different post-translational modifications and catalytic properties with the oocyte AChE.  相似文献   
4.
5.
The concept of "stimulus-secretion coupling" suggested by Douglas and co-workers to explain the events related to monamine discharge by the adrenal medulla (5, 7) may be applied to other endocrine tissues, such as adrenal cortex (36), pancreatic islets (4), and magnocellular hypothalamic neurons (6), which exhibit a similar ion-dependent process of hormone elaboration. In addition, they share another feature, that of joining neighbor cells via membrane junctions (12, 26, and Fletcher, unpublished observation). Given this, and the reports that hormone secretion by the pars distalis also involves a secretagogue-induced decrease in membrane bioelectric potential accompanied by a rise in cellular [Ca++] (27, 34, 41), it was appropriate to test the possibility that cells of the anterior pituitary gland are united by junctions.  相似文献   
6.
7.
The Wnt signaling pathway plays important roles during different stages of neuronal development, including neuronal polarization and dendritic and axonal outgrowth. However, little is known about the identity of the Frizzled receptors mediating these processes. In the present study, we investigated the role of Frizzled-5 (Fzd5) on neuronal development in cultured Sprague-Dawley rat hippocampal neurons. We found that Fzd5 is expressed early in cultured neurons on actin-rich structures localized at minor neurites and axonal growth cones. At 4 DIV, Fzd5 polarizes towards the axon, where its expression is detected mainly at the peripheral zone of axonal growth cones, with no obvious staining at dendrites; suggesting a role of Fzd5 in neuronal polarization. Overexpression of Fzd5 during the acquisition of neuronal polarity induces mislocalization of the receptor and a loss of polarized axonal markers. Fzd5 knock-down leads to loss of axonal proteins, suggesting an impaired neuronal polarity. In contrast, overexpression of Fzd5 in neurons that are already polarized did not alter polarity, but decreased the total length of axons and increased total dendrite length and arborization. Fzd5 activated JNK in HEK293 cells and the effects triggered by Fzd5 overexpression in neurons were partially prevented by inhibition of JNK, suggesting that a non-canonical Wnt signaling mechanism might be involved. Our results suggest that, Fzd5 has a role in the establishment of neuronal polarity, and in the morphogenesis of neuronal processes, in part through the activation of the non-canonical Wnt mechanism involving JNK.  相似文献   
8.
Dysregulated Wnt signaling is linked to major neurodegenerative diseases, including Alzheimer disease (AD). In mouse models of AD, activation of the canonical Wnt signaling pathway improves learning/memory, but the mechanism for this remains unclear. The decline in brain function in AD patients correlates with reduced glucose utilization by neurons. Here, we test whether improvements in glucose metabolism mediate the neuroprotective effects of Wnt in AD mouse model. APPswe/PS1dE9 transgenic mice were used to model AD, Andrographolide or Lithium was used to activate Wnt signaling, and cytochalasin B was used to block glucose uptake. Cognitive function was assessed by novel object recognition and memory flexibility tests. Glucose uptake and the glycolytic rate were determined using radiotracer glucose. The activities of key enzymes of glycolysis such as hexokinase and phosphofructokinase, Adenosine triphosphate (ATP)/Adenosine diphosphate (ADP) levels and the pentose phosphate pathway and activity of glucose‐6 phosphate dehydrogenase were measured. Wnt activators significantly improved brain glucose utilization and cognitive performance in transgenic mice. Wnt signaling enhanced glucose metabolism by increasing the expression and/or activity of hexokinase, phosphofructokinase and AMP‐activated protein kinase. Inhibiting glucose uptake partially abolished the beneficial effects of Wnt signaling on learning/memory. Wnt activation also enhanced glucose metabolism in cortical and hippocampal neurons, as well as brain slices derived from APPswe/PS1E9 transgenic mice. Combined, these data provide evidence that the neuroprotective effects of Wnt signaling in AD mouse models result, at least in part, from Wnt‐mediated improvements in neuronal glucose metabolism.  相似文献   
9.
Acetylcholinesterase (AChE) has been found to be associated with the core of senile plaques. We have shown that AChE interacts with the amyloid beta-peptide (Abeta) and promotes amyloid fibril formation by a hydrophobic environment close to the peripheral anionic binding site (PAS) of the enzyme. Here we present evidence for the structural motif of AChE involved in this interaction. First, we modeled the docking of Abeta onto the structure of Torpedo californica AChE, and identified four potential sites for AChE-Abeta complex formation. One of these, Site I, spans a major hydrophobic sequence exposed on the surface of AChE, which had been previously shown to interact with liposomes [Shin et al. (1996) Protein Sci. 5, 42-51]. Second, we examined several AChE-derived peptides and found that a synthetic 35-residue peptide corresponding to the above hydrophobic sequence was able to promote amyloid formation. We also studied the ability to promote amyloid formation of two synthetic 24-residue peptides derived from the sequence of a Omega-loop, which has been suggested as an AChE-Abeta interacting motif. Kinetic analyses indicate that only the 35-residue hydrophobic peptide mimics the effect of intact AChE on amyloid formation. Moreover, RP-HPLC analysis revealed that the 35-residue peptide was incorporated into the growing Abeta-fibrils. Finally, fluorescence binding studies showed that this peptide binds Abeta with a K(d) = 184 microM, independent of salt concentration, indicating that the interaction is primarily hydrophobic. Our results indicate that the homologous human AChE motif is capable of accelerating Abeta fibrillogenesis.  相似文献   
10.
Peroxisome proliferator activated receptors (PPARs) are nuclear receptors that control important genes involved in lipid metabolism. Their role in nerve cells is uncertain, although anomalous myelination of the corpus callosum has been described in the PPARbeta-null mouse, and abnormalities of this tissue have been documented in fetal alcohol syndrome in humans. We report here that ethanol treatment of B12 oligodendrocyte-like cells induces a concentration- and time-dependent decrease in the mRNA and protein levels of PPARbeta, with no effect on PPARalpha or PPARgamma. The effect on PPARbeta is seen as an increase in mRNA degradation, as assessed by run-off assays, due to a significant decrease in PPARbeta mRNA half-life, with no observed changes in intracellular localization. Our results suggest a possible link between PPARbeta function and ethanol-induced abnormal myelination in oligodendrocytes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号