首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  2012年   1篇
  2011年   2篇
  2009年   1篇
  2008年   1篇
  2005年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
The crystal structure of xylanase 10B from Thermotoga maritima MSB8 (TmxB), a hyperthermostable xylanase, has been solved in its native form and in complex with xylobiose or xylotriose at 1.8 A resolution. In order to gain insight into the substrate subsite and the molecular features for thermal stability, we compared TmxB with family 10 xylanase structures from nine microorganisms. As expected, TmxB folds into a (beta/alpha)8-barrel structure, which is common among the glycoside hydrolase family 10. The enzyme active site and the environment surrounding the xylooligosaccharide of TmxB are highly similar to those of family 10 xylanases. However, only two xylose moieties were found in its binding pocket from the TmxB-xylotriose complex structure. This finding suggests that TmxB could be a potential biocatalyst for the large-scale production of xylobiose. The result of structural analyses also indicated that TmxB possesses some additional features that account for its thermostability. In particular, clusters of aromatic residues together with a lack of exposed hydrophobic residues are characteristic of the TmxB structure. TmxB has also a significant number of ion pairs on the protein surface that are not found in other thermophilic family 10 xylanases.  相似文献   
2.
Trm1 catalyzes a two-step reaction, leading to mono- and dimethylation of guanosine at position 26 in most eukaryotic and archaeal tRNAs. We report the crystal structures of Trm1 from Pyrococcus horikoshii liganded with S-adenosyl-l-methionine or S-adenosyl-l-homocysteine. The protein comprises N-terminal and C-terminal domains with class I methyltransferase and novel folds, respectively. The methyl moiety of S-adenosyl-l-methionine points toward the invariant Phe27 and Phe140 within a narrow pocket, where the target G26 might flip in. Mutagenesis of Phe27 or Phe140 to alanine abolished the enzyme activity, indicating their role in methylating G26. Structural analyses revealed that the movements of Phe140 and the loop preceding Phe27 may be involved in dissociation of the monomethylated tRNA•Trm1 complex prior to the second methylation. Moreover, the catalytic residues Asp138, Pro139, and Phe140 are in a different motif from that in DNA 6-methyladenosine methyltransferases, suggesting a different methyl transfer mechanism in the Trm1 family.  相似文献   
3.
4.
Most of isoniazid-resistant Mycobacterium tuberculosis evolved due to mutation in the katG gene encoding catalase-peroxidase. A set of new mutations, namely T1310C, G1388T, G1481A, T1553C, and A1660G, which correspond to amino acid substitutions of L437P, R463L, G494D, I518T, and K554E, in the katG gene of the L10 clinical isolate M. tuberculosis was identified. The wild-type and mutant KatG proteins were expressed in Escherichia coli BL21(DE3) as a protein of 80 kDa based on sodium dodecyl sulphate-polyacrylamide gel electrophoresis analysis. The mutant KatG protein exhibited catalase and peroxidase activities of 4.6% and 24.8% toward its wild type, respectively, and retained 19.4% isoniazid oxidation activity. The structure modelling study revealed that these C-terminal mutations might have induced formation of a new turn, perturbing the active site environment and also generated new intramolecular interactions, which could be unfavourable for the enzyme activities.  相似文献   
5.
Xylanase J of alkaliphilic Bacillus sp. strain 41M-1 contains a carbohydrate-binding module family 36 xylan-binding domain (XBD). Mutational analysis of the XBD revealed that Tyr237, Asp313, Trp317, and Asp318 were involved in Ca(2+)-dependent xylan-binding, and that Asp313 and Asp318 were especially important.  相似文献   
6.
Archaeal and eukaryotic tRNA (N(2),N(2)-guanine)-dimethyltransferase (Trm1) produces N(2),N(2)-dimethylguanine at position 26 in tRNA. In contrast, Trm1 from Aquifex aeolicus, a hyper-thermophilic eubacterium, modifies G27 as well as G26. Here, a gel mobility shift assay revealed that the T-arm in tRNA is the binding site of A. aeolicus Trm1. To address the multisite specificity, we performed an x-ray crystal structure study. The overall structure of A. aeolicus Trm1 is similar to that of archaeal Trm1, although there is a zinc-cysteine cluster in the C-terminal domain of A. aeolicus Trm1. The N-terminal domain is a typical catalytic domain of S-adenosyl-l-methionine-dependent methyltransferases. On the basis of the crystal structure and amino acid sequence alignment, we prepared 30 mutant Trm1 proteins. These mutant proteins clarified residues important for S-adenosyl-l-methionine binding and enabled us to propose a hypothetical reaction mechanism. Furthermore, the tRNA-binding site was also elucidated by methyl transfer assay and gel mobility shift assay. The electrostatic potential surface models of A. aeolicus and archaeal Trm1 proteins demonstrated that the distribution of positive charges differs between the two proteins. We constructed a tRNA-docking model, in which the T-arm structure was placed onto the large area of positive charge, which is the expected tRNA-binding site, of A. aeolicus Trm1. In this model, the target G26 base can be placed near the catalytic pocket; however, the nucleotide at position 27 gains closer access to the pocket. Thus, this docking model introduces a rational explanation of the multisite specificity of A. aeolicus Trm1.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号