首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  免费   16篇
  2021年   2篇
  2020年   1篇
  2018年   3篇
  2016年   5篇
  2015年   5篇
  2014年   2篇
  2013年   3篇
  2012年   12篇
  2011年   8篇
  2010年   4篇
  2009年   1篇
  2008年   5篇
  2007年   7篇
  2006年   4篇
  2005年   4篇
  2004年   6篇
  2003年   4篇
  2002年   11篇
  2001年   3篇
  2000年   4篇
  1999年   1篇
  1998年   1篇
  1996年   3篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1989年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1980年   1篇
  1979年   2篇
  1976年   1篇
  1972年   1篇
排序方式: 共有115条查询结果,搜索用时 31 毫秒
1.
2.
To establish the chromosomal location of the human ACHE gene encoding the acetylcholine hydrolyzing enzyme acetylcholinesterase (ACHE, acetylcholine acetylhydrolase, E.C. 3.1.1.7), a human-specific polymerase chain reaction (PCR) procedure that supports the selective amplification of ACHE DNA fragments from human genomic DNA was employed with 19 human-hamster somatic cell hybrids carrying one or more human chromosomes. Informative ACHE-specific PCR fragments were produced from two cell lines, both of which include human chromosome 7, but not with DNA from 17 cell hybrids carrying various combinations of all human chromosomes other than 7. Fluorescent in situ hybridization of biotinylated ACHE DNA with metaphase chromosomes from human peripheral blood lymphocytes revealed prominent labeling on the 7q22 position. Therefore, further tests were performed to confirm the chromosome 7 location. DNA samples from the two cell lines including chromosome 7 and the ACHE gene were positive with PCR primers informative for the human cystic fibrosis CFTR gene, known to reside at the 7q31.1 position, but negative for the ACHE-related butyrylcholinesterase (BCHE, acylcholine acylhydrolase, E.C. 3.1.1.8) gene, mapped at the 3q26-ter position, confirming that these lines contain chromosome 7 but not chromosome 3. In contrast, three other cell lines including chromosome 3, but not 7, were BCHE-positive and ACHE-negative. In addition, genomic DNA from a sorted chromosome 7 library supported the production of ACHE- but not BCHE-specific PCR products, whereas with DNA from a sorted chromosome 3 library, the BCHE but not the ACHE fragment was amplified.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
3.
1. Various hybridization approaches were employed to investigate structural and chromosomal interrelationships between the human cholinesterase genes CHE and ACHE encoding the polymorphic, closely related, and coordinately regulated enzymes having butyrylcholinesterase (BuChE) and acetylcholinesterase (AChE) activities. 2. Homologous cosmid recombination with a 190-base pair 5' fragment from BuChEcDNA resulted in the isolation of four overlapping cosmid clones, apparently derived from a single gene with several introns. The Cosmid CHEDNA included a 700-base pair fragment known to be expressed at the 3' end of BuChEcDNA from nervous system tumors and which has been mapped by in situ hybridization to the unique 3q26-ter position. In contrast, cosmid CHEDNA did not hybridize with full-length AChEcDNA, proving that the complete CHE gene does not include AChE-encoding sequences either in exons or in its introns. 3. The chromosomal origin of BuChE-encoding sequences was further examined by two unrelated gene mapping approaches. Filter hybridization with DNA from human/hamster hybrid cell lines revealed BuChEcDNA-hybridizing sequences only in cell lines including human chromosome 3. However, three BuChEcDNA-homologous sequences were observed at chromosomal positions 3q21, 3q26-ter, and 16q21 by a highly stringent in situ hybridization protocol, including washes at high temperature and low salt. 4. These findings stress the selectivity of cosmid recombination and chromosome blots, raise the possibility of individual differences in BuChEcDNA-hybridizing sequences, and present an example for a family highly similar proteins encoded by distinct, nonhomologous genes.  相似文献   
4.
In an attempt to increase the insecticidal effect of the delta-endotoxin crystal protein CryIC on the relatively Cry-insensitive larvae of Spodoptera littoralis, a combination of CryIC and endochitinase was used. CryIC comprising the first 756 amino acids from Bacillus thuringiensis K26-21 and endochitinase ChiAII encoded by Serratia marcescens were separately produced in Escherichia coli carrying the genes in overexpression vectors. The endochitinase on its own, even at very low concentrations (0.1 microgram/ml), perforated the larval midgut peritrophic membrane. When applied together with low concentrations of CryIC, a synergistic toxic effect was obtained. In the absence of chitinase, about 20 micrograms of CryIC per ml was required to obtain maximal reduction in larval weight, while only 3.0 micrograms of CryIC per ml caused a similar toxic effect in the presence of endochitinase. Thus, a combination of the Cry protein and an endochitinase could result in effective insect control in transgenic systems in which the Cry protein is not expressed in a crystalline form.  相似文献   
5.
6.

Background

The incidence of papillary thyroid carcinoma (PTC) has risen steadily over the past few decades as well as the recurrence rates. It has been proposed that targeted ablative physical therapy could be a therapeutic modality in thyroid cancer. Targeted bio-affinity functionalized multi-walled carbon nanotubes (BioNanofluid) act locally, to efficiently convert external light energy to heat thereby specifically killing cancer cells. This may represent a promising new cancer therapeutic modality, advancing beyond conventional laser ablation and other nanoparticle approaches.

Methods

Thyroid Stimulating Hormone Receptor (TSHR) was selected as a target for PTC cells, due to its wide expression. Either TSHR antibodies or Thyrogen or purified TSH (Thyrotropin) were chemically conjugated to our functionalized Bionanofluid. A diode laser system (532 nm) was used to illuminate a PTC cell line for set exposure times. Cell death was assessed using Trypan Blue staining.

Results

TSHR-targeted BioNanofluids were capable of selectively ablating BCPAP, a TSHR-positive PTC cell line, while not TSHR-null NSC-34 cells. We determined that a 2:1 BCPAP cell:α-TSHR-BioNanofluid conjugate ratio and a 30 second laser exposure killed approximately 60% of the BCPAP cells, while 65% and >70% of cells were ablated using Thyrotropin- and Thyrogen-BioNanofluid conjugates, respectively. Furthermore, minimal non-targeted killing was observed using selective controls.

Conclusion

A BioNanofluid platform offering a potential therapeutic path for papillary thyroid cancer has been investigated, with our in vitro results suggesting the development of a potent and rapid method of selective cancer cell killing. Therefore, BioNanofluid treatment emphasizes the need for new technology to treat patients with local recurrence and metastatic disease who are currently undergoing either re-operative neck explorations, repeated administration of radioactive iodine and as a last resort external beam radiation or chemotherapy, with fewer side effects and improved quality of life.  相似文献   
7.
8.
BACKGROUND: Cell transfection requires cationic DNA complexes and heparan sulfate proteoglycans (HSPGs) at the cell surface. Syndecans are transmembrane HSPGs that are ubiquitously expressed on adherent cells. Their polyanionic heparan sulfate moieties are bound at the distal end of their ectodomain, thus facilitating interaction with large cationic particles. METHODS: We propose a model for cell entry involving syndecans as receptors for the DNA complexes by comparing transfection with bacteria uptake and using drug inhibition experiments along with confocal microscopy. RESULTS: When combined with results from the literature, our data suggest the following sequence of events: after initial particle binding, gradual electrostatic zippering of the plasma membrane onto the particle is sustained by lateral diffusion of syndecan molecules that cluster into cholesterol-rich rafts. Clustering in turn triggers PKC activity and linker protein-mediated actin binding to the cytoplasmic tail of the syndecans. Resulting tension fibers and a growing network of cortical actin may then pull the particle into the cell. CONCLUSIONS: Diversion of integrin- and syndecan-mediated cell adhesion processes for particle engulfment appears to be widely exploited by animals (chylomicrons), by pathogens (bacteria, viruses) and, as suggested here, by non-viral vectors.  相似文献   
9.
The Rho family GTPases are pivotal for T cell signaling; however, the regulation of these proteins is not fully known. One well studied regulator of Rho GTPases is Vav1; a hematopoietic cell-specific guanine nucleotide exchange factor critical for signaling in T cells, including stimulation of the nuclear factor of activated T cells (NFAT). Surprisingly, Vav1 associates with Ly-GDI, a hematopoietic cell-specific guanine nucleotide dissociation inhibitor of Rac. Here, we studied the functional significance of the interaction between Vav1 and Ly-GDI in T cells. Upon organization of the immunological synapse, both Ly-GDI and Vav1 relocalize to T cell extensions in contact with the antigen-presenting cell. Ly-GDI is phosphorylated on tyrosine residues following T cell receptor stimulation, and it associates with the Src homology 2 region of an adapter protein, Shc. In addition, the interaction between Ly-GDI and Vav1 requires tyrosine phosphorylation. Overexpression of Ly-GDI alone is inhibitory to NFAT stimulation and calcium mobilization. However, when co-expressed with Vav1, Ly-GDI enhances Vav1 induction of NFAT activation, phospholipase Cgamma phosphorylation, and calcium mobilization. Moreover, Ly-GDI does not alter the regulation of these phenomena when coexpressed with oncogenic Vav1. Since oncogenic Vav1 does not bind Ly-GDI, this suggests that the functional cooperativity of Ly-GDI and Vav1 is dependent upon their association. Thus, our data suggest that the interaction of Vav1 and Ly-GDI creates a fine tuning mechanism for the regulation of intracellular signaling pathways leading to NFAT stimulation.  相似文献   
10.
Id2 negatively regulates B cell differentiation in the spleen   总被引:2,自引:0,他引:2  
Early stages of B cell development occur in the bone marrow, resulting in formation of immature B cells. These immature cells migrate to the spleen where they differentiate into mature (B2 or marginal zone (MZ)) cells. This final maturation step is crucial for B cells to become responsive to Ags and to participate in the immune response. Id2 is a helix-loop-helix protein that lacks a DNA-binding region; and therefore, inhibits basic helix-loop-helix functions in a dominant negative manner. In this study, we show that Id2 expression is down-regulated during differentiation of immature B cells into mature B2 and MZ B cells. The high levels of Id2 expressed in the immature B cells result in inhibition of E2A binding activity to an E2 box site. Moreover, mice lacking Id2 show an elevation in the proportion of mature B2 cells in the spleen, while the MZ population in these mice is almost absent. Thus, Id2 acts as a regulator of the differentiation of immature B cells occurring in the spleen, it negatively controls differentiation into mature B2 cells while allowing the commitment to MZ B cells. In the absence of Id2 control, the unregulated differentiation is directed toward the mature B2 population.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号