首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  2019年   1篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2010年   1篇
  2008年   1篇
  2003年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
The predator satiation hypothesis states that synchronous periodic production of seeds is an adaptive strategy evolved to reduce the pressure of seed predators. The seed production pattern is crucial to the predator satiation hypothesis, but there are few studies documenting the success of individuals that are in synchrony and out of synchrony with the whole population. This study is based on long-term data on seed production of Sorbus aucuparia and specialised pre-dispersal seed predation by Argyresthia conjugella, in a subalpine spruce forest in the Western Carpathians (Poland). At the population level, we tested whether functional and numerical responses of predators to the variation of fruit production operate. At the individual level, we tested whether individuals with higher interannual variability in their own seed crops and higher synchrony with the population have higher percentages of uninfested fruits. The intensity of pre-dispersal seed predation was high (average 70 %; range 19–100 %). There were both functional and numerical responses of predators to the variation of fruit production at the population level. We found that individuals that were expected to be preferred under seed predator pressure had higher reproductive success. With increasing synchrony of fruit production between individual trees and the population, the percentage of infested fruits decreased. There was also a negative relationship between the interannual variation in individual fruit production and the percentage of infested fruits. These results confirm selection for individuals with a masting strategy. However, the population does not seem well adapted to strong seed predation pressure and we suggest that this may be a result of prolonged diapause of A. conjugella.  相似文献   
2.
This study examined the effects of burrow digging and habitation by the European badger (Meles meles) and the red fox (Vulpes vulpes) on soil properties and the plant community. The vegetation of control plots located in a similar but undisturbed habitat was compared with that of 18 burrow plots established at badger setts (N = 9) and fox dens (N = 9) in a lowland forest area in Poland. Soil physicochemical properties at different disturbance levels (mounds, intermounds and reference areas) were also investigated. The animals altered nutrient availability in the burrow plots considerably by excavating material from deep soil horizons that were less acidic and higher in K, Ca, Mg and available P but poorer in C and N. The effect was stronger for the badger, probably because it displaced larger amounts of material and disturbed wider areas. The activity of the two carnivores induced similar changes in plant communities. They increased herbaceous species richness and caused a shift in the herbaceous species composition: versus the control plots, the burrow plots contained more fugitive species (short-living plants typical for disturbed environments), among which ruderal forbs, including nutrient-demanding species, dominated. The carnivores also increased the species richness of fleshy-fruited shrubs and trees. The primary reason for this was probably not burrowing but endozoochorous seed dispersal. Overall, the results indicate that the badger setts and fox dens differ significantly from the forest matrix in terms of soil and vegetation parameters, and that they contribute to habitat heterogeneity and biological diversity.  相似文献   
3.
Question: Have past windstorm events influenced the structure and composition of mountain forests in the Tatra Mountains? Can severe and infrequent wind disturbances lead to dynamic coexistence of two tree species with different ecological requirements? Location: Subalpine mixed spruce‐larch forest at 1200‐1300 m a.s.l. in the Slovakian Tatra Mountains. A forested site affected by catastrophic large‐scale windthrow on 19 November 2004. Methods: Sixty‐seven spruce and 30 larch cross‐sections from the oldest cohorts were collected in a regular pattern in a 100‐ha plot. Tree‐ring series were analysed to reconstruct growth releases associated with past windthrows. A boundary‐line release criterion was applied to detect disturbance year. Spatial patterns of release signals were statistically detected with Mantel's test. We compared reconstructed years of disturbance events with historical records. Results: Releases in both species showed three main pulses. More than 85% showed major or moderate releases in 1865‐1879, 48% in 1915‐1924, and 25% in 1940‐1949. All of these disturbance events affected the whole 100‐ha area. Releases were spatially patterned in the first disturbances, but distributed randomly in the last. Releases co‐occurred in time with enhanced production of compression wood, suggesting disturbances were of wind origin. Reconstructed dates of windthrows were confirmed using historical data on storms. Conclusions: At least three windthrows of major and moderate severity took place in the last 150 years on southern slopes of the Tatra Mountains. This disturbance regime may contribute to coexistence of spruce and larch through differences in vulnerability and response to heavy windstorms.  相似文献   
4.
Trophic plant–animal interactions (e.g. browsing by ungulates, insect attack) are an important and well‐studied source of mortality in many tree populations. Non‐trophic tree–animal interactions (e.g. deer antler rubbing) also frequently lead to tree death, and thus have significant effects on forest ecosystem functioning, but they are much less well studied than trophic interactions are. As deer populations have increased in recent decades in the Northern Hemisphere, their impact on tree populations via browsing and antler rubbing will increase. The aim of the study was to illustrate the potential ability of non‐trophic plant–animal interactions to regulate the dynamics of a natural forest. Specifically, we wanted to determine whether and how density and distance‐dependent processes affect sapling mortality caused by an antler rubbing by red deer Cervus elaphus. We used a spatially explicit approach to examine density and distance‐dependent mortality effects in almost two thousand Picea abies saplings over 20 years, based on a fully mapped permanent 14.4 ha plot in a natural subalpine old‐growth spruce forest. Antler rubbing by deer was the main identified cause of sapling mortality, and it showed a strong spatial pattern: positive density dependence of survival among spruce saplings. Deer selectively killed spruce saplings that were isolated from conspecifics. In consequence, non‐trophic plant–deer interactions were a major driver of the spatial pattern of P. abies sapling survival. The other mortality causes (e.g. breaking, overturning) did not show density‐dependent patterns or their effects were much weaker. In the medium and long term, the density‐dependent pattern of sapling mortality due to antler rubbing can alter the tree stand structure. Our results highlight the ecological relevance of non‐trophic plant–animal interactions for forest ecosystem functioning.  相似文献   
5.
Masting is usually considered as a population phenomenon but it results from individuals?? reproductive patterns. Studies of individual patterns of seed production and their synchrony are essential to an understanding of the mechanisms of masting. The aim of this study was to find the relationship between population and individual levels of masting. We examined individuals?? contribution to masting, considering their endogenous cycles, interannual variability and associated weather cues, as well as inter-individual synchrony of fruit production. We studied masting of Sorbus aucuparia L., which in Europe is one of the most common trees bearing fleshy fruits and is strongly affected by a specialized seed predator. The data are 11-year measurements of fruit production of 250 individuals distributed on a 27-ha area of subalpine forest in the Western Carpathians (Poland). Population- and individual-level interannual variability of fruit production was moderate. Synchrony among individuals was relatively high for all years, but the trees were much less synchronized in heavy crop years than in years of low fruit production. Weak synchrony among trees for heavy production years suggests that the predator satiation hypothesis does not explain the observed masting behavior. Fruit production, both at individual and at population level, was highly correlated with weather conditions. However, the presence of masting cannot be fully explained by the resource-matching hypothesis either. We suggest that adverse weather conditions effectively limit fruit production, causing high inter-individual synchrony in low crop years, whereas the unsynchronized heavy crop years seem to have been affected by individually available resources.  相似文献   
6.
7.
In this paper we reconstructed flood events in a small mountain stream (6.6 km long, elevation 1100–1950 m a.s.l.) in the Dolina Waksmundzka Valley in the Tatra Mountains in the Western Carpathians. This reconstruction was based on cross-dated flood scars found in Norway spruce trees growing along stream banks. The scars were most likely formed by woody debris and stones transported during flood events. Reconstructed flood years were then compared with climatic records collected at the nearest meteorological station.Fifty-eight scars were cross-dated indicating 17 years with flood events in the period between 1928 and 2005. The large number of reconstructed flood events proves that the Potok Waksmundzki stream discharge can be highly variable. The high mid-summer rainfall (approximately 300 mm or more per month) peaks in June, July, August and this period coincides with some of the flood scar formation. The high winter and spring precipitation (December–May) does not seem to induce floods. The rate of snow melting seems to be more important. The highest number of scars (33%) was formed in dormant season of 1957/1958. In April and May 1958 there was an unusually large difference between mean monthly temperatures, the highest recorded in the twentieth century. This probably led to an abnormally rapid snow melt. No one single climatic factor can be held responsible for all flood events. Intensive mid-summer rainfall as well as rapid snow melting may induce floods in the Dolina Waksmundzka Valley. Cross-dated scars have enabled past flood events to be detected, which are otherwise invisible from climatic data alone.  相似文献   
8.
Holeksa  Jan 《Plant Ecology》2003,168(1):57-67
The field-layer structure relative to the distribution of canopy gaps was analysed in a subalpine spruce forest in the Babia Góra massif – one of the highest in the Polish West Carpathians. Nineteen synusiae (floristically, physiognomically and ecologically homogenous one-layered vegetation units) in the field-layer were distinguished on the basis of the dominance of 8 vascular plants and 1 moss species. The presence of synusiae was noted in a grid of points spaced at 10 × 10 m which was established in a 14.4 ha area. This grid was then laid over a map of gap distribution. The main results are: 1. Nearly 2/3 of the area was covered with two mono-dominant synusiae: Athyrium distentifolium and Vaccinium myrtillus. 2. The spatial structure of the field layer was related to the distribution of gaps. A significant departure from a random distribution was noted for eight synusiae, which together covered 88% of the area under the spruce canopy and 92% in gaps. 3. The percentage of area covered by Athyrium distentifolium in gaps was nearly twice as great as outside them. A positive relationship to gaps also showed patches dominated by Calamagrostis villosa and Dryopteris dilatata + Rubus idaeus, while a negative relationship occurred for synusiae dominated by: Dryopteris dilatata, Vaccinium myrtillus, V. myrtillus + D. dilatata, and V. myrtillus + Polytrichum formosum. 4. There were significant differences in the structure of the field layer between the understory of closed stands and in gaps larger than 50 m2. This means that even a small-scale disturbance touching a few trees and causing only a small modification in light and soil conditions can result in considerable changes in the field-layer vegetation in subalpine spruce forests.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号