首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9214篇
  免费   857篇
  国内免费   9篇
  10080篇
  2022年   68篇
  2021年   149篇
  2020年   93篇
  2019年   149篇
  2018年   146篇
  2017年   115篇
  2016年   197篇
  2015年   299篇
  2014年   325篇
  2013年   422篇
  2012年   496篇
  2011年   474篇
  2010年   277篇
  2009年   273篇
  2008年   404篇
  2007年   378篇
  2006年   380篇
  2005年   359篇
  2004年   354篇
  2003年   330篇
  2002年   323篇
  2001年   131篇
  2000年   112篇
  1999年   132篇
  1998年   112篇
  1997年   76篇
  1996年   87篇
  1995年   70篇
  1994年   88篇
  1993年   69篇
  1992年   93篇
  1991年   108篇
  1990年   103篇
  1989年   84篇
  1988年   76篇
  1987年   93篇
  1986年   79篇
  1985年   76篇
  1984年   110篇
  1983年   82篇
  1982年   95篇
  1981年   84篇
  1980年   107篇
  1979年   78篇
  1978年   92篇
  1977年   85篇
  1976年   75篇
  1975年   68篇
  1974年   70篇
  1973年   88篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
Inhibitory pathways are an essential component in the function of the neocortical microcircuitry. Despite the relatively small fraction of inhibitory neurons in the neocortex, these neurons are strongly activated due to their high connectivity rate and the intricate manner in which they interconnect with pyramidal cells (PCs). One prominent pathway is the frequency-dependent disynaptic inhibition (FDDI) formed between layer 5 PCs and mediated by Martinotti cells (MCs). Here, we show that simultaneous short bursts in four PCs are sufficient to exert FDDI in all neighboring PCs within the dimensions of a cortical column. This powerful inhibition is mediated by few interneurons, leading to strongly correlated membrane fluctuations and synchronous spiking between PCs simultaneously receiving FDDI. Somatic integration of such inhibition is independent and electrically isolated from monosynaptic excitation formed between the same PCs. FDDI is strongly shaped by I(h) in PC dendrites, which determines the effective integration time window for inhibitory and excitatory inputs. We propose a key disynaptic mechanism by which brief bursts generated by a few PCs can synchronize the activity in the pyramidal network.  相似文献   
3.
The kinetics of L-phenylalanine absorption across rat small intestine in sham and 50% distal resected animals, in vivo, have been studied by perfusing jejunal loops and monitoring the disappearance of the substrate from the perfusate. After 5 months postresection the total phenylalanine absorption was increased. The relationship between total absorption of substrate and its concentration in the bulk phase shows a non-saturable component and a saturable one that can be inhibited by methionine, both in control and remnant jejunum. The slope of the line that represents the non-saturable component is greater in remnant jejunum, indicating that the apparent mass-transfer coefficient, K'D, was increased by distal resection. The kinetic analysis of the saturable component shows that Jmax was unaltered and the apparent semisaturation constant, K'M, was slightly decreased by distal small intestine resection. Correction of the kinetic constant for the unstirred water layer effects shows that the differences between 'real' KD values of the two experimental groups increase whereas 'real' KM values do not change significantly. This indicates that the observed increase in total intestinal absorption in resected animals appears to result from an increase in the intestinal passive permeability.  相似文献   
4.
5.
Connexin 43 (Cx43) is the most abundant gap junction protein in bone and is required for osteoblastic differentiation and bone homeostasis. During fracture healing, Cx43 is abundantly expressed in osteoblasts and osteocytes, while Cx43 deficiency impairs bone formation and healing. In the present study we selectively deleted Cx43 in the osteoblastic lineage from immature osteoblasts through osteocytes and tested the hypothesis that Cx43 deficiency results in delayed osteoblastic differentiation and impaired restoration of biomechanical properties due to attenuated β-catenin expression relative to wild type littermates. Here we show that Cx43 deficiency results in alterations in the mineralization and remodeling phases of healing. In Cx43 deficient fractures the mineralization phase is marked by delayed expression of osteogenic genes. Additionally, the decrease in the RankL/ Opg ratio, osteoclast number and osteoclast size suggest decreased osteoclast bone resorption and remodeling. These changes in healing result in functional deficits as shown by a decrease in ultimate torque at failure. Consistent with these impairments in healing, β-catenin expression is attenuated in Cx43 deficient fractures at 14 and 21 days, while Sclerostin (Sost) expression, a negative regulator of bone formation is increased in Cx43cKO fractures at 21 days, as is GSK-3β, a key component of the β-catenin proteasomal degradation complex. Furthermore, we show that alterations in healing in Cx43 deficient fractures can be rescued by inhibiting GSK-3β activity using Lithium Chloride (LiCl). Treatment of Cx43 deficient mice with LiCl restores both normal bone formation and mechanical properties relative to LiCl treated WT fractures. This study suggests that Cx43 is a potential therapeutic target to enhance fracture healing and identifies a previously unknown role for Cx43 in regulating β-catenin expression and thus bone formation during fracture repair.  相似文献   
6.
During an ultrastructural study of small-intestinal mucosa from a patient suffering from alpha-chain disease organisms were identified within the epithelial cytoplasm which showed the fine structural features of the coccidian group. Though coccidiosis is well recognized as causing a diarrhoeal and often lethal illness in animals it has been neglected as a cause of disease in man. Thus this finding may be significant and warrants further investigation into its possible role in the pathogenesis of alpha-chain disease.  相似文献   
7.
8.
9.
10.
Methyl 3-azido-2-O-benzoyl-3,4-dideoxy-β-dl-erythro-pentopyranoside (6) was synthesized through two routes in five steps from methyl 2,3-anhydro-4-deoxy-β-dl-erythro-pentopyranoside (1). The first route proceeded via selective azide displacement of the 3-tosyloxy group of methyl 4-deoxy-2,3-di-O-tosyl-α-dl-threo-pentopyranoside, followed by detosylation and benzoylation. The second route consisted, with a better overall yield, in the azide displacement of the mesyloxy group of methyl O-benzoyl-4-deoxy-3-O-methylsulfonyl-α-dl-threo-pentopyranoside (10), obtained by benzylate opening of 1, followed by benzoylation, debenzylation, and mesylation. Compound 6 was transformed into its glycosyl chloride, further treated by 6-chloropurine to give the nucleoside 9-(3-azido-2-O-benzoyl-3,4-dideoxy-β-dl-erythro-pentopyranosyl)-6-chloropurine (13). When treated with propanolic ammonia, 13 yielded 9-(3-azido-3,4-dideoxy-β-dl-erythro-pentopyranosyl)adenine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号