首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5460篇
  免费   485篇
  国内免费   3篇
  2023年   19篇
  2022年   63篇
  2021年   159篇
  2020年   75篇
  2019年   81篇
  2018年   121篇
  2017年   111篇
  2016年   166篇
  2015年   263篇
  2014年   316篇
  2013年   364篇
  2012年   455篇
  2011年   402篇
  2010年   274篇
  2009年   232篇
  2008年   314篇
  2007年   292篇
  2006年   265篇
  2005年   217篇
  2004年   226篇
  2003年   234篇
  2002年   198篇
  2001年   63篇
  2000年   57篇
  1999年   63篇
  1998年   56篇
  1997年   38篇
  1996年   31篇
  1995年   32篇
  1994年   41篇
  1993年   40篇
  1992年   34篇
  1991年   37篇
  1990年   37篇
  1989年   26篇
  1988年   27篇
  1987年   23篇
  1986年   30篇
  1985年   26篇
  1984年   33篇
  1983年   20篇
  1982年   28篇
  1980年   21篇
  1979年   29篇
  1978年   28篇
  1977年   23篇
  1974年   21篇
  1973年   19篇
  1972年   21篇
  1969年   19篇
排序方式: 共有5948条查询结果,搜索用时 31 毫秒
1.
2.
Indirect evidence has suggested that the Msh2-Msh6 mispair-binding complex undergoes conformational changes upon binding of ATP and mispairs, resulting in the formation of Msh2-Msh6 sliding clamps and licensing the formation of Msh2-Msh6-Mlh1-Pms1 ternary complexes. Here, we have studied eight mutant Msh2-Msh6 complexes with defective responses to nucleotide binding and/or mispair binding and used them to study the conformational changes required for sliding clamp formation and ternary complex assembly. ATP binding to the Msh6 nucleotide-binding site results in a conformational change that allows binding of ATP to the Msh2 nucleotide-binding site, although ATP binding to the two nucleotide-binding sites appears to be uncoupled in some mutant complexes. The formation of Msh2-Msh6-Mlh1-Pms1 ternary complexes requires ATP binding to only the Msh6 nucleotide-binding site, whereas the formation of Msh2-Msh6 sliding clamps requires ATP binding to both the Msh2 and Msh6 nucleotide-binding sites. In addition, the properties of the different mutant complexes suggest that distinct conformational states mediated by communication between the Msh2 and Msh6 nucleotide-binding sites are required for the formation of ternary complexes and sliding clamps.  相似文献   
3.
4.
Abstract: Pharmacologically active agents were employed to study the mechanisms that control the reduction in levels of acetyl-coA: arylamine N-acetyltransferase activity (NAT) (EC 2.3.1.5) in the rat pineal. Pretreatment of rats with phenoxybenzamine or phentolamine prevented the rapid light-mediated decrease in NAT activity, although pretreatment with yohimbine or atropine did not alter this effect of light. Administration of mecamylamine resulted in a rapid reduction in enzyme activity prior to light exposure. When clonidine was administered intraperitoneally to animals with elevated NAT levels, there was a rapid decrease in enzyme activity, mimicking the effects of light. However, intraperitoneal injections of norepinephrine, methoxamine and phenylephrine into similar groups of animals had no significant effect on enzyme acitivity. When clonidine and norepinephrine were administered intraventricularly, there was a rapid reduction in enzyme activity. On the other hand, intraventricular administration of phenylephrine did not result in reduced enzyme activity. Pretreatment of animals with phenoxybenzamine failed to block the reduction in NAT activity precipitated by low doses of clonidine. This clonidine-mediated reduction in enzyme activity was, however, blocked by yohimbine. When animals were simultaneously exposed to light and administered clonidine, the rapid reduction in NAT activity was affected only when animals were pretreated with both yohimbine and phenoxybenzamine. In contrast to the decrease in pineal NAT activity observed in in vivo preparations, incubation of pineals with clonidine in an organ culture system produced a moderate, but consistent, rise in enzyme activity. These results suggest that stimulation of a receptor with α-adrenergic characteristics mediates the reduction in NAT activity produced by light. Stimulation of yet a second adrenergic-like receptor appears to mediate a reduction in pineal NAT activity precipitated by clonidine. Our evidence suggests that one or both of these receptors are located within the central nervous system.  相似文献   
5.
FTA® cards were used for long‐term storage of avian blood samples. Blood DNA was extracted by a simple method and used in PCR for sex identification of adult and nestling Great Grey Shrikes Lanius excubitor.  相似文献   
6.
7.
8.
Identification of genetic markers involved in stress response to physical factors or chemical substances in organisms is a challenging task. Typing of upregulated gene expression due to selective antibacterial pressure is a promising approach in the search of molecular mechanisms responsible for development of resistance. cDNA-Fluorescent Amplified Fragment Length Polymorphism (cDNA-FAFLP) strategy was developed and applied in the search of antimycotic drug resistance marker(s) in medically important fungi as an alternative method to microarray analysis. We compared differential gene expression of two sensitive Candida albicans reference strains (ATCC 10231 and ATCC 60133) and two of their paired resistant to fluconazole and itraconazole mutants. Resistant mutants Candida albicans FLC-R, resistant to fluconazole (MIC > 128 μg/ml) and Candida albicans ICZ-R, resistant to itraconazole (MIC > 4 μg/ml) were obtained in subcultures with gradual increase of the antifungal in the culture medium. cDNA-AFLP profile in both itraconazole resistant mutants showed specific spectrophotometric peaks with 5–6-fold RNA overexpression product of 500 bp length compared to the sensitive strains. Fluconazole mutants do not reveal RNA level changes under tested by us typing conditions. These results indicate that the cDNA-FAFLP strategy is a relatively rapid, simple, and reliable method for simultaneous typing of both constitutive and induced differences in expression of host genes providing insight into the biological processes involved in response to drugs in bacteria and fungi. Moreover, this methodology could be tested for typing of the genome response of any organism to physical or chemical stress factors.  相似文献   
9.
Approximately 10% of all cancers, but a higher proportion of sarcomas, use the recombination-based alternative lengthening of telomeres (ALT) to maintain telomeres. Two RecQ helicase genes, BLM and WRN, play important roles in homologous recombination repair and they have been implicated in telomeric recombination activity, but their precise roles in ALT are unclear. Using analysis of sequence variation present in human telomeres, we found that a WRN– ALT+ cell line lacks the class of complex telomere mutations attributed to inter-telomeric recombination in other ALT+ cell lines. This suggests that WRN facilitates inter-telomeric recombination when there are sequence differences between the donor and recipient molecules or that sister-telomere interactions are suppressed in the presence of WRN and this promotes inter-telomeric recombination. Depleting BLM in the WRN– ALT+ cell line increased the mutation frequency at telomeres and at the MS32 minisatellite, which is a marker of ALT. The absence of complex telomere mutations persisted in BLM-depleted clones, and there was a clear increase in sequence homogenization across the telomere and MS32 repeat arrays. These data indicate that BLM suppresses unequal sister chromatid interactions that result in excessive homogenization at MS32 and at telomeres in ALT+ cells.  相似文献   
10.
The homodimeric bc1 complexes are membrane proteins essential in respiration and photosynthesis. The ~ 11 Å distance between the two bL-hemes of the dimer opens the possibility of electron transfer between them, but contradictory reports make such inter-monomer electron transfer controversial. We have constructed in Rhodobacter sphaeroides a heterodimeric expression system similar to those used before, in which the bc1 complex can be mutated differentially in the two copies of cyt b to test for inter-monomer electron transfer, but found that genetic recombination by cross-over then occurs to produce wild-type homodimer. Selection pressure under photosynthetic growth always favored the homodimer over heterodimeric variants enforcing inter-monomer electron transfer, showing that the latter are not competitive. These results, together with kinetic analysis of myxothiazol titrations, demonstrate that inter-monomer electron transfer does not occur at rates competitive with monomeric turnover. We examine the results from other groups interpreted as demonstrating rapid inter-monomer electron transfer, conclude that similar mechanisms are likely to be in play, and suggest that such claims might need to be re-examined.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号