首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   415篇
  免费   37篇
  2024年   3篇
  2023年   11篇
  2022年   33篇
  2021年   30篇
  2020年   13篇
  2019年   18篇
  2018年   12篇
  2017年   7篇
  2016年   19篇
  2015年   23篇
  2014年   32篇
  2013年   28篇
  2012年   29篇
  2011年   37篇
  2010年   11篇
  2009年   15篇
  2008年   15篇
  2007年   16篇
  2006年   7篇
  2005年   11篇
  2004年   10篇
  2003年   8篇
  2002年   3篇
  2001年   3篇
  2000年   8篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1993年   1篇
  1992年   3篇
  1991年   4篇
  1990年   6篇
  1989年   13篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1980年   1篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
  1967年   1篇
  1959年   2篇
排序方式: 共有452条查询结果,搜索用时 15 毫秒
1.

Backgound  

It has been reported that Toll-like receptor 4 (TLR4) deficiency reduces infarct size after myocardial ischemia/reperfusion (MI/R). However, measurement of MI/R injury was limited and did not include cardiac function. In a chronic closed-chest model we assessed whether cardiac function is preserved in TLR4-deficient mice (C3H/HeJ) following MI/R, and whether myocardial and systemic cytokine expression differed compared to wild type (WT).  相似文献   
2.
Summary Defects in the enzyme, steroid 21-hydroxylase, result in congenital adrenal hyperplasia (CAH), a common autosomal recessive disorder of cortisol biosynthesis. The gene encoding this protein (CYP21B) and a closely linked pseudogene (CYP21A) have been mapped in the HLA complex on chromosome 6p, adjacent to the complement genes C4B and C4A, about 80 kb from the factor B gene. Molecular analyses of patients with CAH have shown that the cause of the defect may be either a deletion, a point mutation or a conversion of the active gene. Linkage of the disease to HLA has previously been studied by several groups. We have analyzed DNAs from patients with classical and non-classical CAH and from their family members, by probing with CYP21, C4 and BF cDNAs. In 70% of the CAH haplotypes studied, the defective CYP21B gene was indistinguishable from its structurally intact corresponding gene in Southern blot analysis, and presumably bore point mutations. In the remaining chromosomes, evidence for gene conversions, deletions and various deleterious mutations of the CYP21B gene is given. Moreover, our linkage studies show that a polymorphic TaqI cleavage site in the factor B gene, recently described by us, may be a new and useful genetic marker, because we found this TaqI restriction site only in unaffected haplotypes carrying functional CYP21B genes and, therefore, in negative association with the defective CYP21B gene.  相似文献   
3.
Seven human melanoma metastases were extracted in order to check the possible presence of any alpha-melanocyte stimulating hormone (MSH) immunoreactivity. The aim of that study was to provide some explanation for, mainly, two observations that we have already made and reported: 1) increased plasma alpha-MSH levels in melanoma of tumour-bearing patients as compared with tumour-free patients; 2) the presence of specific alpha-MSH receptors on human melanoma cells in culture. We could measure large amounts of immunoreactive alpha-MSH in all tumours ranging from 0.31 to 4.27 pmoles per g of wet tissue. Further identification of the extracted material by high-performance liquid chromatography revealed compounds of higher molecular weight and more hydrophobic than synthetic alpha-MSH. In addition, purified extracts could also displace 125I-labelled alpha-MSH from its cellular binding sites in an alpha-MSH specific radio-receptor binding assay. Our findings would suggest a possible presence of some hormone precursor(s) inside the melanoma tumours.  相似文献   
4.
5.
Moxifloxacin and ofloxacin are two broad-spectrum quinolone antibiotics. They are among the most widely used antibiotics, at this time, applied to control the COVID-19 pandemic. Hydroxychloroquine is an FDA-approved drug for the treatment of COVID-19. This work describes a simple, green, selective, and sensitive spectrofluorimetric method for the assay of moxifloxacin and ofloxacin in the presence of hydroxychloroquine, two co-administered mixtures used in the treatment of hospital-acquired pneumonia in patients with COVID-19. Simultaneous assay of hydroxychloroquine and moxifloxacin was carried out in methanol using a direct spectrofluorimetric method (method I) at 375 and 550 nm, respectively, after excitation at 300 nm. The direct spectrofluorimetric assay was rectilinear over concentration ranges 50.0–400.0 and 300.0–2500.0 ng/ml for hydroxychloroquine and moxifloxacin, respectively, with limits of detection (LOD) of 6.4 and 33.64 ng/ml and limits of quantitation (LOQ) of 19.4 and 102.6 ng/ml, respectively, for the two drugs. The assay for hydroxychloroquine and ofloxacin was carried out by measuring the first derivative synchronous amplitude for hydroxychloroquine at the zero crossing point of ofloxacin and vice versa at Δλ = 140 nm (method II). Hydroxychloroquine was measured at 266 nm, while ofloxacin was measured at 340 nm over the concentration range 4–40 ng/ml for hydroxychloroquine and 200–2000 ng/ml for ofloxacin with LOD of 0.467 and 25.3 ng/ml and LOQ of 1.42 and 76.6 ng/ml, respectively, for the two drugs. The two methods were validated following International Conference on Harmonization guidelines and were applied to the analysis of the two drugs in plasma with good percentage recoveries (109.73–93.17%).  相似文献   
6.
Nucleoside phosphorylases are important biocatalysts for the chemo-enzymatic synthesis of nucleosides and their analogs which are, among others, used for the treatment of viral infections or cancer. S-methyl-5′-thioadenosine phosphorylases (MTAP) are a group of nucleoside phosphorylases and the thermostable MTAP of Aeropyrum pernix (ApMTAP) was described to accept a wide range of modified nucleosides as substrates. Therefore, it is an interesting biocatalyst for the synthesis of nucleoside analogs for industrial and therapeutic applications. To date, thermostable nucleoside phosphorylases were produced in shake flask cultivations using complex media. The drawback of this approach is low volumetric protein yields which hamper the wide-spread application of the thermostable nucleoside phosphorylases in large scale. High cell density (HCD) cultivations allow the production of recombinant proteins with high volumetric yields, as final optical densities >100 can be achieved. Therefore, in this study, we developed a suitable protocol for HCD cultivations of ApMTAP. Initially, optimum expression conditions were determined in 24-well plates using a fed-batch medium. Subsequently, HCD cultivations were performed using E. coli BL21-Gold cells, by employing a glucose-limited fed-batch strategy. Comparing different growth rates in stirred-tank bioreactors, cultivations revealed that growth at maximum growth rates until induction resulted in the highest yields of ApMTAP. On a 500-mL scale, final cell dry weights of 87.1–90.1 g L−1 were observed together with an overproduction of ApMTAP in a 1.9%–3.8% ratio of total protein. Compared to initially applied shake flask cultivations with terrific broth (TB) medium the volumetric yield increased by a factor of 136. After the purification of ApMTAP via heat treatment and affinity chromatography, a purity of more than 90% was determined. Activity testing revealed specific activities in the range of 0.21 ± 0.11 (low growth rate) to 3.99 ± 1.02 U mg−1 (growth at maximum growth rate). Hence, growth at maximum growth rate led to both an increased expression of the target protein and an increased specific enzyme activity. This study paves the way towards the application of thermostable nucleoside phosphorylases in industrial applications due to an improved heterologous expression in Escherichia coli.  相似文献   
7.
From sampling in three areas neighbouring Tunis, the first polluted, the second contaminated and the third clean, the authors point out that the technic of multiple samples using the "Lactose Broth" is the most sensible to faecal pollution.  相似文献   
8.
Polyamines (PAs) are positively charged molecules known to mitigate drought stress; however, little is known about their mechanism of alleviating drought stress. We investigated the effects of PAs exogenously applied as a seed primer and as a foliar spray on the growth, membrane stability (MS), electrolyte leakage (EL), Na+ and K+ cations, reactive oxygen species (ROS), catalase (CAT; EC 1.11.1.6) and guaiacol peroxidase (GPX; EC 1.11.1.7) activity and chloroplast ultra-structure in wheat (Triticum aestivum L.; cv. Sakha-94) under drought stress. Three PA solutions, namely, putrescine, spermine and a mixture of the two (Mix), were each applied at a concentration of 100 µM. Our study demonstrated that the retardation of chlorophyll loss and elevation of Rubisco levels were involved in PA-enhanced growth under drought stress. These relationships were mainly reflected in elevated fresh weight and dry weight in response to foliar spraying with all PA solutions and seed priming with the Mix solution. The elevated growth seemed to be due to increased photosynthetic pigments, protein and Rubisco. In contrast, drought decreased growth, photosynthetic pigments, protein and Rubisco. MS was enhanced by PAs applied as a seed primer or foliar spray, as shown by clear reductions in EL %, malondialdehyde (MDA) content and the Na+/K+ ratio as well as reduced ROS markers and elevated CAT (but not GPX) activity. Further study showed that the Mix solution of PAs, applied either during seed priming or as a foliar spray, improved chloroplast ultra-structure, suggesting that improvements in Rubisco and photosynthetic pigments were involved in PA maintenance of chloroplast stability. Therefore, the present study showed that elevated CAT activity is the main mechanism through which PAs reduce ROS and MDA, thereby improving MS and protecting mesophyll cells structurally and functionally under drought stress in wheat.  相似文献   
9.
10.
Urban expansion can be seen as the most pervasive human impact on the environment where its high resource use contributes negatively to climate change and resource scarcity crises. Many experts call for decoupling resource use, economic development, and related urban development especially within cities of the Global South. This paper focuses on investigating resource efficiency through the lens of urban metabolism. It investigates current resource flows, through material flow analysis, from source to sink, in two diverse districts in Cairo: a formal district and an informal one, regarding materials (waste) and mobility. Consequently, the paper discusses locally responsive interventions that address local priorities as opposing to citywide one‐size fits all solution. The paper relies on parcel audits, which are embedded in an Urban Metabolism Information System developed by the Ecocity Builders and their partners, through a joint project with Cairo University. The methodology couples crowd‐sourced data, parcel audits, and experts’ knowledge to better understand resource flows based on a bottom‐up approach, given the unavailability of governmental data on the local level. The paper further correlates the perceived quality of life with the actual resource flows. It utilizes fieldwork investigations to argue against the local misconceptions regarding the inefficiency of informal areas/systems versus the higher efficiency of planned areas/systems. The paper concludes by proposing integrated solutions that respond to local needs and resources. It highlights the challenges and lessons of this tailored bottom‐up approach and its applicability in other cities worldwide.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号