首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  8篇
  2021年   2篇
  2019年   2篇
  2018年   1篇
  2013年   1篇
  2009年   1篇
  2000年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
Protocols elaborated with the objective of achieving valuable material for selection procedure of variants with virusresistance traits in tomato genotypes are presented. Preliminary results are demonstrated in the domain of testing for variability in somaclones obtained through indirect adventitous organogenesis initiated on leaf explants of cultivated tomato (Lycopersicon esculentum Mill.). Somaclones were grown in greenhouse conditions and variation of their symptoms upon infection with tomato mosaic (ToMV) or cucumber mosaic (CMV) respectively was observed. Tests for resistance to the local isolates of the above cited viruses were performed using enzyme linked immunosorbent assay and back inoculation onto diagnostic plants. Screening data are presented. Desirable variants were selected from cultivars ‘Moneymaker’, ‘Potentat’ and ‘Rutgers’. Some of the ‘Moneymaker’ somaclones exhibited increased tolerance to cucumber mosaic virus, a few seemed to be even fully resistant though most were susceptible as donor plants. The most favourable somaclonal lines are actually further tested and monitored for changes in horticultural characteristics. The described procedure of searching for resistance trait in specific pathogen-free (SPF) plants regenerated from infected tissue looks promising and thus can serve as aid in attaining appropriate objectives of breeding programme. Additionaly experiments were initiated to obtain somaclones from cultivars ‘Beta’, ‘Krakus’ and Stevens Rodade hybrid via regeneration of isolated protoplasts. To this end the callus stage was obtained from all donors.  相似文献   
2.
The effect of culture filtrate (conditioned medium, CM) containing cell exudates obtained from green alga, Scenedesmus subspicatus, on cell suspension of dicotyledonous plant Silene vulgaris was examined. The addition of diluted CM to the modified MS medium, supplemented with dicamba and BAP, stimulates cell biomass production. The biomass was composed of association of single non-dividing cells, cells during mitosis stage and cellular aggregates. Silene cells began mitotic divisions earlier in the presence of CM in medium when compared to control treatments. Results of performed bioassay showed that some factor or factors released by green alga to the culture medium could be responsible for sustained proliferation of phylogenetically distant species cells. Although it is still unclear which culture constituent influenced most the mitotic response of Silene suspension, results point at versatile stimulatory character of green alga exudates in higher plant cell culture.  相似文献   
3.
Plant and Soil - Pseudo-metallophyte Silene vulgaris frequently colonizes polluted areas. We investigated whether plants obtained under in vitro conditions can be used to form long-term communities...  相似文献   
4.
Plant and Soil - The aim of this study was to compare the efficiency of three defense mechanisms (ionic balance, osmotic adjustment and counteracting oxidative stress) under low, moderate and high...  相似文献   
5.
Three Daphne species (Thymelaeaceae) were propagated in vitro using media enriched with natural ingredients including coconut water, pineapple pulp, arabinogalactan, chitosan, and conditioned medium containing exudates of the green alga Desmodesmus subspicatus. High vigor of proliferative shoots and enhanced rooting efficiency were obtained. The propagation rate for shoot cultures of Daphne caucasica and Daphne tangutica increased significantly when cultured in the presence of 10 ml?L?1 coconut water or 10 ml?L?1 pineapple pulp. Addition of 10 ml?L?1 pineapple pulp, 10 ml?L?1 coconut water, or 20% conditioned medium to the culture medium stimulated organogenesis in D. caucasica. The percentage of rooted shoots in this difficult-to-root species reached 80% in enriched medium. Daphne jasminea plants rooted efficiently on media without growth regulators but supplemented with 10 ml?L?1 pineapple pulp or 10 ml?L?1 coconut water. Plants of D. caucasica and D. jasminea were successfully acclimatized to greenhouse conditions. Biochemical evaluation of pineapple pulp using thin-layer chromatography revealed the absence of natural auxins. However, the low-molecular-weight fraction (<500 Da) obtained via dialysis significantly stimulated rhizogenesis in each species tested.  相似文献   
6.

Pulsatilla turczaninovii is an important medicinal plant, valued for high ornamental value of melliferous flowers. We assessed the efficiency of reproduction under in vitro conditions and the ex situ growth capacity of this important representative of the world flora. The seed germination percentage was assessed, followed by determination of micropropagation rate and rooting efficiency. Then, the possibility of plant development in three consecutive growing seasons was assessed. The in vitro germination percentage was approximately 55%. The highest multiplication coefficient, amounting to 5.17, was obtained on modified MS medium supplemented with 2.5 mg L?1 2iP and 1.0 mg L?1 IAA. Our study provided unique insight on biochemical background of root regeneration in P. turczaninovii. In comparison with standard auxin-supplemented rooting medium, the treatment with 1.0 mg L?1 level of ethylene precursor ACC elevated rooting by about 20%. The total content of soluble sugars was proved to be biomarker of rhizogenesis in the studied species. Their concentration was positively correlated with rooting efficiency, while a level of phenolic was positively correlated with the length of regenerated roots, and their number per rosette. The cultivation of the acclimatized material was successfully carried out and was evaluated over three subsequent years. In the third year of cultivation, the plants entered the stage of generative development and most of them bloomed profusely.

  相似文献   
7.
Avoidance and reduction of soil contamination with heavy metals is one of the most serious global challenges. Nowadays, science offers us new opportunities of utilizing plants to extract toxic elements from the soil by means of phytoremediation. Plant abilities to uptake, translocate, and transform heavy metals, as well as to limit their toxicity, may be significantly enhanced via genetic engineering. This paper provides a comprehensive review of recent strategies aimed at the improvement of plant phytoremediation potential using plant transformation and employing current achievements in nuclear and cytoplasmic genome transformation. Strategies for obtaining plants suitable for effective soil clean-up and tolerant to excessive concentrations of heavy metals are critically assessed. Promising directions in genetic manipulations, such as gene silencing and cis- and intragenesis, are also discussed. Moreover, the ways of overcoming disadvantages of phytoremediation using genetic transformation approachare proposed. The knowledge gathered here could be useful for designing new research aimed at biotechnological improvement of phytoremediation efficiency.  相似文献   
8.

Comparative effect of meta-topolin and other cytokinins was assessed to develop an efficient and reliable regeneration protocol for Tecoma stans, using mature nodal explants. The morphogenic effect of benzyl adenine (BA), kinetin (Kin), meta- topolin (mT) and 2-iP (2-iso pentenyl adenine) at various concentrations (1.0–10 µM) was studied individually or in combination with auxins (IAA, IBA or NAA). Superior multiplication rates were achieved on MS medium supplemented with mT and NAA. Of the tested combinations, maximum shoot regeneration (95%), mean shoot number (19.6?±?0.60) and length (5.26?±?0.73 cm) was recorded on MS medium supplemented with 7.5 µM mT?+?0.5 µM NAA after 8 weeks of incubation. Among the different auxins employed for in vitro root induction, 92.5% microshoots rooted on MS medium enriched with 1.0 µM IBA with 10.8?±?0.20 mean root number and 5.62?±?0.17 cm length after 4 weeks of incubation. The acclimatized plants grew well in green house with 90% survival rate. The gas chromatography–mass spectrometry (GC–MS) analysis of ethanol leaf extract of in vitro-raised plants yielded a higher number of compounds than control plant. The assessment of genetic fidelity among regenerants, using ISSR markers did not reveal any somaclonal variation. Therefore, the protocol developed appears to be simple and reliable for mass production of clones with higher diversity of secondary metabolites.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号