首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   270篇
  免费   33篇
  国内免费   1篇
  2023年   2篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   13篇
  2014年   12篇
  2013年   15篇
  2012年   13篇
  2011年   14篇
  2010年   8篇
  2009年   12篇
  2008年   16篇
  2007年   22篇
  2006年   17篇
  2005年   22篇
  2004年   17篇
  2003年   18篇
  2002年   16篇
  2001年   4篇
  2000年   6篇
  1999年   9篇
  1998年   5篇
  1997年   3篇
  1996年   6篇
  1995年   4篇
  1994年   6篇
  1993年   2篇
  1992年   4篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   3篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1978年   1篇
  1977年   2篇
  1973年   2篇
  1968年   2篇
  1967年   2篇
  1963年   1篇
排序方式: 共有304条查询结果,搜索用时 31 毫秒
1.
To study T cell tolerance, transgenic mice were generated that expressed the Mlsa-reactive T cell receptor (TCR) beta chain V beta 8.1 (cDNA) under the control of the H-2Kb promoter/immunoglobulin heavy chain enhancer on approximately 90% of peripheral T cells. In transgenic mice bearing Mlsa, thymocytes expressing the TCR at a high density were deleted and the percentage of Thy 1.2+ lymph node cells was reduced. The CD4/CD8 ratio of mature T cells was reversed in Mlsa and Mlsb transgenic mice independent of the H-2. RNA analysis and immunofluorescence with TCR V beta-specific antibodies revealed that expression of endogenous TCR beta genes was suppressed. Both Mlsa and Mlsb TCR beta chain transgenic mice mounted a T-cell-dependent IgG response against viral antigens, whereas the capacity to generate alloreactive and virus-specific cytotoxic T cells was impaired in TCR beta chain transgenic Mlsa, but not in transgenic Mlsb mice.  相似文献   
2.
Octamers of mitochondrial creatine kinase (Mi-CK) wore modified with the thiol-specific reagents N-ethylmaleimide or the gold-coupled derivative, maleidoyl undecagold. The kinetics of inhibition of the Mi-CK catalysis was shown to be comparable for both reagents, suggesting that the large gold cluster complex is accessible to the reactive cysteines. SDS-PAGE analysis revealed that two of eight cysteines per Mi-CK monomer were labeled with maleidoyl undecagold with a similar affinity for the functional maleimide group. Gel exclusion chromatography of labeled molecules showed that the octameric structure of Mi-CK was preserved after thiol modification. Freeze-dried gold-labeled octamers visualized by electron microscopy under cryoconditions were enhanced in contrast and showed a well-preserved fourfold symmetry of the end-on view, Image analysis of gold-labeled Mi-CK exhibited an averaged end-on view with four strong contrast signals located at the periphery of the notamer, whereas the center of the molecule remained electron translucent. We conclude that the two cysteine residues per monomer labeled with maleidoyl undecagold are located at the octamer's perimeter and we discuss the possible role of these reactive cysteines in enzyme catalysis.  相似文献   
3.
Dynamic material flow analysis (dMFA) is widely used to model stock-flow dynamics. To appropriately represent material lifetimes, recycling potentials, and service provision, dMFA requires data about the allocation of economy-wide material consumption to different end-use products or sectors, that is, the different product stocks, in which material consumption accumulates. Previous estimates of this allocation only cover few years, countries, and product groups. Recently, several new methods for estimating end-use product allocation in dMFA were proposed, which so far lack systematic comparison. We review and systematize five methods for tracing material consumption into end-use products in inflow-driven dMFA and discuss their strengths and limitations. Widely used data on industry shipments in physical units have low spatio-temporal coverage, which limits their applicability across countries and years. Monetary input–output tables (MIOTs) are widely available and their economy-wide coverage makes them a valuable source to approximate material end-uses. We find four distinct MIOT-based methods: consumption-based, waste input–output MFA (WIO-MFA), Ghosh absorbing Markov chain, and partial Ghosh. We show that when applied to a given MIOT, the methods’ underlying input–output models yield the same results, with the exception of the partial Ghosh method, which involves simplifications. For practical applications, the MIOT system boundary must be aligned to those of dMFA, which involves the removal of service flows, sector (dis)aggregation, and re-defining specific intermediate outputs as final demand. Theoretically, WIO-MFA, applied to a modified MIOT, produces the most accurate results as it excludes massless and waste transactions. In part 2 of this work, we compare methods empirically and suggest improvements for aligning MIOT-dMFA system boundaries.  相似文献   
4.
Abstract: In astrocytes, nerve growth factor (NGF) synthesis has been described to be stimulated by the cytokines interleukin-1β (IL-1β) and transforming growth factor-β1 (TGF-β1) and inhibited by corticosterone. As all three factors are present in the brain under certain conditions, we investigated the effect of their combined application on NGF secretion in the astroglial cell line RC7 and, in addition, studied the effect of calcitriol (1α,25-dihydroxyvitamin D3). Calcitriol stimulated NGF secretion, whereas corticosterone reduced basal levels of NGF secretion as well as inhibited the NGF secretion induced by IL-1β, calcitriol, and TGF-β1. Calcitriol had an additive effect when applied together with IL-1β and a synergistic effect when applied with TGF-β1. Moreover, calcitriol not only counteracted the inhibitory effect of corticosterone on NGF secretion stimulated by TGF-β1 but even augmented it to a level more than threefold higher than that reached with TGF-β1 alone. Due to the trophic effect of NGF on basal forebrain cholinergic neurons, these findings might be of therapeutic relevance under conditions where cholinergic function is impaired and the endogenous levels of corticosterone, IL-1β, or TGF-β1 are elevated.  相似文献   
5.
Many theories of human stereovision are based on feature matching and the related correspondence problem. In this paper, we present psychophysical experiments indicating that localized image features such as Laplacian zerocrossings, intensity extrema, or centroids are not necessary for binocular depth perception. Smooth one-dimensional intensity profiles were combined into stereograms with mirror-symmetric half-images such that these localized image features were either absent or did not carry stereo information. In a discrimination task, subjects were asked to distinguish between stereograms differing only by an exchange of these half-images (ortho- vs. pseudoscopic stereograms). In a depth ordering task, subjects had to judge which of the two versions appeared in front. Subjects are able to solve both tasks even in the absence of the mentioned image features. The performance is compared to various possible stereo mechanisms. We conclude that localized image features and the correspondences between them are not necessary to perceive stereoscopic depth. One mechanism accounting for our data is correlation or mean square difference. Received: 8 February 1994 / Accepted in revised form: 15 September 1994  相似文献   
6.
Mannitol dehydrogenase (mannitol: NADP+ 2-oxidoreductase: EC 1.1.1.138) was isolated from Agaricus bisporus by fractionation with protamine sulphate and (NH4)2SO4, followed by chromatography on DEAE-Sephadex, then by affinity and gel chromatography. The products of enzyme reaction were identified by GLC and TLC. Km, optimum pH, MW and pI of the enzyme as well as the influence of temperature, ions and inhibitors on enzymic activity were determined. In the sugar reducing reaction, the enzyme was specific for fructose but, in the reverse direction, some structurally related polyols could substitute for mannitol. The enzyme was very sensitive to alterations in the NADP+/NADPH ratio. The results are discussed in relation to the possible role of mannitol dehydrogenase in fungal metabolism.  相似文献   
7.
8.
The bacterial flagellar motor is a remarkable nanomachine that provides motility through flagellar rotation. Prior structural studies have revealed the stunning complexity of the purified rotor and C-ring assemblies from flagellar motors. In this study, we used high-throughput cryo-electron tomography and image analysis of intact Borrelia burgdorferi to produce a three-dimensional (3-D) model of the in situ flagellar motor without imposing rotational symmetry. Structural details of B. burgdorferi, including a layer of outer surface proteins, were clearly visible in the resulting 3-D reconstructions. By averaging the 3-D images of ∼1,280 flagellar motors, a ∼3.5-nm-resolution model of the stator and rotor structures was obtained. flgI transposon mutants lacked a torus-shaped structure attached to the flagellar rod, establishing the structural location of the spirochetal P ring. Treatment of intact organisms with the nonionic detergent NP-40 resulted in dissolution of the outermost portion of the motor structure and the C ring, providing insight into the in situ arrangement of the stator and rotor structures. Structural elements associated with the stator followed the curvature of the cytoplasmic membrane. The rotor and the C ring also exhibited angular flexion, resulting in a slight narrowing of both structures in the direction perpendicular to the cell axis. These results indicate an inherent flexibility in the rotor-stator interaction. The FliG switching and energizing component likely provides much of the flexibility needed to maintain the interaction between the curved stator and the relatively symmetrical rotor/C-ring assembly during flagellar rotation.Flagellum-based motility plays a critical role in the biology and pathogenesis of many bacteria (3, 6, 17, 31). The well-conserved flagellum is commonly divided into three physical parts: the flagellar motor, the helically shaped flagellar filament, and the hook which provides a universal joint between the motor and the filament. In most bacteria, counterclockwise rotation of the flagella results in bundling of the helical flagella and propulsion of the cell through liquid or viscous environments. Clockwise rotation of the flagellar motor results in random turning of the cell with little translational motion (“tumbling”). Bacterial motility is thus a zigzag pattern of runs and tumbles, in which chemotactic signals favor running toward attractants and away from repellents (3).Borrelia burgdorferi and other closely related spirochetes are the causative agents of Lyme disease, which is transmitted to humans via infected Ixodes ticks (40). Spirochetes have a distinctive morphology in that the flagella are enclosed within the outer membrane sheath and are thus called periplasmic flagella (6). The flagellar motors are located at both ends of the cell and are coordinated to rotate in opposite directions during translational motion and in the same direction (i.e., both clockwise or both counterclockwise) during the spirochete equivalent of tumbling, called “flexing” (6, 15). Spirochetes are also capable of reversing translational motion by coordinated reversal of the direction of motor rotation at both ends of the cell. Rotation of the flagella causes a serpentine movement of the entire cell body, allowing B. burgdorferi to efficiently bore its way through tissue and disseminate throughout the mammalian host, resulting in manifestations in the joints, nervous system, and heart (40).The flagellar motor is an extraordinary nanomachine powered by the electrochemical potential of specific ions across the cytoplasmic membrane (3). Current knowledge of the flagellar motor structure and rotational mechanisms is based primarily on studies of Escherichia coli and Salmonella enterica and is summarized in several recent comprehensive reviews (3, 22, 31, 39, 42). The flagellar motor is constructed from at least 20 different kinds of proteins. The approximate location of these flagellar proteins has been determined by a variety of approaches and appears to be relatively consistent in a wide variety of bacteria. It can be divided into several morphological domains: the MS ring (FliF, the base for the flagellar motor); the C ring (FliG, FliM, and FliN, the switch complex regulating motor rotation); the export apparatus (multiple-protein complex located at the cytoplasmic side of the MS ring); the rod (connecting the MS ring and the hook); the L and P rings on the rod (thought to serve as bushings at the outer membrane and at the peptidoglycan layer, respectively); and the stator, which is the motor force generator embedded in the cytoplasmic membrane. Electron microscopy studies of the purified flagellar motor have provided a detailed view of the rotor/C-ring assembly (11, 44). However, there is no structural information on the stator and the export apparatus in these reconstructions, because these membrane-associated structures are not retained following detergent extraction during the extensive basal body purification process. The stator and the export apparatus were visualized by using freeze fracture preparations of cytoplasmic membranes. It appears that 10 to 16 stator units form circular arrays in the membrane (9, 20). Part of the export apparatus is located in the central space of the C ring (18). Recently a 7-nm-resolution structure of the intact flagellar motor in situ was revealed by averaging 20 structures obtained using cryo-electron tomography (cryo-ET) of Treponema primitia cells (32). Further analysis of the intact flagellar motor structure would lead to a better understanding of the motor protein distribution, the rotor-stator interaction, and the mechanism of bacterial motility.Cryo-ET has emerged as a three-dimensional (3-D) imaging technique to bridge the information gap between X-ray crystallographic and optical microscopic methods (24, 30). This process involves rapidly freezing viable cells, collecting a series of electron micrographs at different angles, and computationally combining the resulting images into a 3-D density map. Cryo-ET allows investigation of the structure-function relationship of molecular complexes and supramolecular assemblies in their cellular environments without fixation, dehydration, embedding, or sectioning artifacts. Spirochetes are well suited for cryo-ET analysis because of their narrow cell diameter (typically 0.2 to 0.3 μm). Recently the cellular architecture of Treponema primitia, Treponema denticola, and B. burgdorferi, as well as the configuration of the B. burgdorferi periplasmic flagella, were revealed by cryo-ET (7, 16, 26, 33). In combination with advanced computational methods, cryo-ET is currently the most promising approach for determining the cellular architecture in situ at molecular resolution (30). We have developed novel strategies for capturing and averaging thousands of 3-D images of large macromolecular assemblies to obtain ∼2.0-nm-resolution structures (28, 29).In this study, we present the molecular structures of infectious wild-type (WT) and mutant B. burgdorferi organisms and their flagellar motors in situ using high-throughput cryo-ET and 3-D image analysis. By averaging subvolumes of 1,280 flagellar motors from 322 cells, we obtained a ∼3.5-nm-resolution model of the intact flagellar motor, providing a detailed view of rotor-stator interactions. In addition, detergent treatment of intact cells provided a preliminary identification of the rotor and stator structures. Through the comparison of WT and mutant cells, we have also determined the location of the flgI gene product in the B. burgdorferi flagellar motor.  相似文献   
9.
Genetic variation among 38 isolates of Stagonospora sp. and 10 isolates of Septoria sp. from bindweed was studied using (a) restriction fragment length plymorphism (RFLP) analysis of the internal transcribed spacer (ITS) region, and (b) random amplified polymorphic DNA (RAPD) PCR analysis. RFLP analysis revealed three types of fragment patterns among the isolates. A total of 26 distinct groups, based on common fragment patterns, were identified using cluster analysis of the RAPD-PCR data. When the grouping results of the two methods were compared, the fragment pattern types and clusters were generally in agreement. The degree of pathogenicity of six genetically characterized isolates of Stagonospora sp. was assessed on three ecotypes of field bindweed (Convolvulus arvensis). Disease symptoms were observed with all isolates on all ecotypes, but only Stagonospora convolvuli strain LA39, a potential biocontrol agent, showed a high degree of pathogenicity on all ecotypes. A mixture of two Stagonospora sp. enhanced the mean necrotic leaf area on bindweed from 33.9 and 39.0% (when applied alone) to 64.9% applied together at the same final concentration of 5 X 106 spores ml -1 . Molecular methods were used to identify the two pathogens. Both were present on the same plant when applied together, but never found in the same lesion.  相似文献   
10.
Input–output analysis is one of the central methodological pillars of industrial ecology. However, the literature that discusses different structures of environmental extensions (EEs), that is, the scope of physical flows and their attribution to sectors in the monetary input–output table (MIOT), remains fragmented. This article investigates the conceptual and empirical implications of applying two different but frequently used designs of EEs, using the case of energy accounting, where one represents energy supply while the other energy use in the economy. We derive both extensions from an official energy supply–use dataset and apply them to the same single‐region input–output (SRIO) model of Austria, thereby isolating the effect that stems from the decision for the extension design. We also crosscheck the SRIO results with energy footprints from the global multi‐regional input–output (GMRIO) dataset EXIOBASE. Our results show that the ranking of footprints of final demand categories (e.g., household and export) is sensitive to the extension design and that product‐level results can vary by several orders of magnitude. The GMRIO‐based comparison further reveals that for a few countries the supply‐extension result can be twice the size of the use‐extension footprint (e.g., Australia and Norway). We propose a graph approach to provide a generalized framework to disclosing the design of EEs. We discuss the conceptual differences between the two extension designs by applying analogies to hybrid life‐cycle assessment and conclude that our findings are relevant for monitoring of energy efficiency and emission reduction targets and corporate footprint accounting.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号