首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   7篇
  77篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2019年   3篇
  2018年   2篇
  2017年   5篇
  2016年   8篇
  2015年   1篇
  2014年   4篇
  2013年   3篇
  2012年   3篇
  2011年   6篇
  2010年   2篇
  2009年   6篇
  2008年   2篇
  2007年   1篇
  2006年   2篇
  2005年   3篇
  2004年   1篇
  2003年   1篇
  1999年   1篇
  1998年   2篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1985年   1篇
  1984年   1篇
  1981年   1篇
  1977年   1篇
  1972年   1篇
  1967年   1篇
  1965年   2篇
  1964年   1篇
  1962年   1篇
  1960年   1篇
排序方式: 共有77条查询结果,搜索用时 0 毫秒
1.
In the present work, the hydrodistillation (HD) and microwave‐assisted hydrodistillation (MAHD) kinetics of essential oil (EO) extracted from Tetraclinis articulata (Vahl ) Mast. wood was conducted, in order to assess the impact of extraction time and technique on chemical composition and biological activities. Gas chromatography (GC) and GC/mass spectrometry analyses showed significant differences between the extracted EOs, where each family class or component presents a specific kinetic according to extraction time, technique and especially for the major components: camphene, linalool, cedrol, carvacrol and α‐acorenol. Furthermore, our findings showed a high variability for both antioxidant and anti‐inflammatory activities, where each activity has a specific effect according to extraction time and technique. The highlighted variability reflects the high impact of extraction time and technique on chemical composition and biological activities, which led to conclude that we should select EOs to be investigated carefully depending on extraction time and technique, in order to isolate the bioactive components or to have the best quality of EO in terms of biological activities and preventive effects in food.  相似文献   
2.
Capsule: Mediterranean Yellow-legged Gulls mate assortatively according to carotenoid-based colouration but not in relation to size.  相似文献   
3.
S100 proteins comprise a multigene family of EF-hand calcium binding proteins that engage in multiple functions in response to cellular stress. In one case, the S100B protein has been implicated in oligodendrocyte progenitor cell (OPC) regeneration in response to demyelinating insult. In this example, we report that the mitochondrial ATAD3A protein is a major, high-affinity, and calcium-dependent S100B target protein in OPC. In OPC, ATAD3A is required for cell growth and differentiation. Molecular characterization of the S100B binding domain on ATAD3A by nuclear magnetic resonance (NMR) spectroscopy techniques defined a consensus calcium-dependent S100B binding motif. This S100B binding motif is conserved in several other S100B target proteins, including the p53 protein. Cellular studies using a truncated ATAD3A mutant that is deficient for mitochondrial import revealed that S100B prevents cytoplasmic ATAD3A mutant aggregation and restored its mitochondrial localization. With these results in mind, we propose that S100B could assist the newly synthesized ATAD3A protein, which harbors the consensus S100B binding domain for proper folding and subcellular localization. Such a function for S100B might also help to explain the rescue of nuclear translocation and activation of the temperature-sensitive p53val135 mutant by S100B at nonpermissive temperatures.The S100 proteins comprise a multigene family of low-molecular-weight EF-hand calcium binding and zinc binding proteins (5, 13, 16, 24, 33). To date, 19 different S100 proteins have been assigned to this protein family, and they show different degrees of similarity, ranging from 25 to 56% identity at the amino acid level. With S100B, S100P, and S100Z being the exceptions, the majority of the S100 genes are clustered on human chromosome 1q21 (33). Most S100 proteins serve as calcium sensor proteins that, upon activation, regulate the function and/or subcellular distribution of specific target proteins (13, 33, 47), and they are characterized by common structural motifs, including two low-affinity (KD [equilibrium dissociation constant] of ∼10 μM to 100 μM) helix-loop-helix calcium binding domains (EF hands) that are separated by a hinge region and flanked by amino- and carboxy-terminal domains. The carboxy-terminal domain is variable among S100 proteins, and it typically is the site that is responsible for the selective interaction of each individual S100 protein with specific target proteins (30). S100 proteins are often upregulated in cancers, in inflammation, and in response to cellular stress (14, 16), suggesting that they function in cell responses to stress situations. Consistent with this hypothesis, stress situations were necessary to reveal phenotypes associated with the S100 knockout in mice (11, 14, 33, 56). Moreover, recent observations revealed a new function for the S100 protein family that included their ability to assist and regulate multichaperone complex-ligand interactions (41, 50, 51).One member of the S100 protein family, S100B, has attracted much interest in the past few years because, like other proteins implicated in neurodegeneration (e.g., amyloid, superoxide dismutase, and dual-specificity tyrosine phosphorylation-regulated kinase 1A), its gene is located within a segment of chromosome 21, which is trisomic in Down''s syndrome (DS). Its expression in the brain of mammals coincides with defined periods of central nervous system (CNS) maturation and cell differentiation (43). In oligodendrocyte progenitor cells (OPC), S100B expression is associated with differentiation, and S100B contributes to OPC differentiation in response to demyelinating insult (11). To understand the contribution of S100B to OPC differentiation, we searched for high-affinity S100B target proteins in this cell type by using far-Western analysis. A major and highly specific S100B target protein was identified, the mitochondrial ATAD3A protein.ATAD3A belongs to a new family of eukaryote-specific mitochondrial AAA+ ATPase proteins (17). In the human genome, two genes, Atad3A and Atad3B, are located in tandem on chromosome 1p36.33. The Atad3A gene is ubiquitous among multicellular organisms but absent in yeast. The Atad3B gene is specific to the human genome (27). ATAD3A is a mitochondrial protein anchored into the mitochondrial inner membrane (IM) at contact sites with the outer membrane (OM). Thanks to its simultaneous interaction with the two membranes, ATAD3A regulates mitochondrial dynamics at the interface between the inner and outer membranes and controls diverse cell responses ranging from mitochondrial metabolism, cell growth, and mitochondrial fission 20a, 25). The ATAD3A protein has also been identified as a mitochondrial DNA binding protein (23) and as a cell surface antigen in some human tumors (20, 21). The plasma membrane localization of ATAD3A in tumor cells is suggestive that ATAD3A mitochondrial routing can be compromised in pathological situations such as cancer. To understand the functional response resulting from the interaction between S100B and ATAD3A, we first characterized the minimal interaction domain on ATAD3A for S100B binding using thermodynamic studies of wild-type and ATAD3A variants as well as via nuclear magnetic resonance (NMR) spectroscopy techniques. These studies allowed us to further refine the consensus S100B binding motif, which is conserved in several other S100B target proteins, including the p53 protein and several newly discovered target proteins associated with the cell translational machinery. We next analyzed the cellular interaction of S100B with truncated ATAD3A mutants that harbor the S100B binding domain but that are deficient for mitochondrial import. These studies revealed that S100B could assist ATAD3A mutant proteins during cytoplasmic processing by preventing dysfunctional aggregation events. Our results are discussed in light of the possible function of S100B in assisting the cytoplasmic processing of proteins for proper folding and subcellular localization.  相似文献   
4.
Like the majority of Columbiformes, the Laughing Dove Spilopelia senegalensis is sexually monomorphic in plumage, but seems to be slightly dimorphic in size. However, due to the lack of studies little is known about the sexual size dimorphism in this species. In this work, we used morphometric data on a sample of 61 Laughing Doves from southern Tunisia, and sexed using a DNA-based method, to assess size differences between males and females and to determine a discriminant function useful for sex identification. The results showed that wing length was the most dimorphic trait, which could be due to the effects of sexual selection. The best function for the discrimination between sexes included wing length and head length, which is comparable with findings on other dove species. This discriminant function accurately classified 89% of birds, providing a rapid and accurate tool for sex identification in the studied population. Further data from different populations are needed for firmer conclusions about the extent of sexual size dimorphism and the reliability of the morphometric sexing approach in this dove species.  相似文献   
5.
Biocompatible and biodegradable peptide hydrogels are drawing increasing attention as prospective materials for human soft tissue repair and replacement. To improve the rather unfavorable mechanical properties of our pure peptide hydrogels, in this work we examined the possibility of creating a double hydrogel network. This network was created by means of the coassembly of mutually attractive, but self-repulsive oligopeptides within an already-existing fibrous network formed by the charged, biocompatible polysaccharides chitosan, alginate, and chondroitin. Using dynamic oscillatory rheology experiments, it was found that the coassembly of the peptides within the existing polysaccharide network resulted in a less stiff material as compared to the pure peptide networks (the elastic modulus G' decreased from 90 to 10 kPa). However, these composite oligopeptide-polysaccharide hydrogels were characterized by a greater resistance to deformation (the yield strain γ grew from 4 to 100%). Small-angle neutron scattering (SANS) was used to study the 2D cross-sectional shapes of the fibers, their dimensional characteristics, and the mesh sizes of the fibrous networks. Differences in material structures found with SANS experiments confirmed rheology data, showing that incorporation of the peptides dramatically changed the morphology of the polysaccharide network. The resulting fibers were structurally very similar to those forming the pure peptide networks, but formed less stiff gels because of their markedly greater mesh sizes. Together, these findings suggest an approach for the development of highly deformation-resistant biomaterials.  相似文献   
6.
Summary Egyptian cotton seeds var. Menoufi were soaked in water for 24 hours and then subjected to X-irradiation doses of 250, 500, and 10000 r. The seeds were then sown and observations on growth, flowering, and fruiting were recorded. A stimulatory effect was observed with the three radiation doses. The 500 r caused the highest stimulation with regard to boll setting and yield.  相似文献   
7.
Summary Limited proteolysis with pepsin solubilized 25% of the insoluble gingival matrix as mainly soluble collagenous material. Fractional salt precipication at neutral pH resulted in the separation of types III and I at 1.8 and 2.6 M NaCl, respectively. In addition, a collagenous fraction accounting for 2% of the solubilized collagen and precipitating at 4.5 M NaCl was shown to be identical with type V collagen. Isolation and partial characterization of the constituent-α-chains of the 4.5 M PPT by gel filtration, ion exchange and hydroxylapatite chromatography as well as disc electrophoresis showed that gingival type V collagen contains αA and αB chains in a ratio αB/αA of 1.73–1.8. Electron microscopic examination of ATP-precipitates showed that this collagen type gave only one kind of SLS aggregates with asymmetric band pattern characteristically different from that of type I collagen. The data provide evidence that gingival AB collagen is a heteropolymer in which the αA and αB chains are assembled in the same macromolecule in a 1∶2 ratio.  相似文献   
8.
DNA undergoes a helix-to-coil transition (also called denaturation transition) upon heating. This transition can also be facilitated by using solvent mixtures (for example water–alcohol). An increase in the hydrophobic tail of the second solvent molecule first decreases then increases the melting temperature appreciably. Measurement on 4% DNA in a series of water–alcohol mixtures shows that the helix-to-coil melting transition is driven by the solvent ability to cross the hydrophobic sugar-rich region. DNA is behaving like a cylindrical micelle.  相似文献   
9.
10.
A new non-marine ostracod fauna from the Paleogene “hamadian deposits” outcropping west of Bechar (southwestern Algeria) has been recovered from lacustrine to fluvial deposits of the Oued Méridja section and fluvial deposits on the southern edge of the Hamada de Méridja section. Recently, these sections have been dated as late Thanetian – early Ypresian (latest Paleocene to earliest Eocene) and Ypresian – earliest Lutetian (early to earliest middle Eocene), respectively, based on charophytes. The associated ostracod fauna recovered consists of relatively mostly moderately to badly preserved specimens and comprises 14 taxa, none of which could be identified to species level in view of its poor state of preservation; we have nevertheless been able to identify and describe the following taxa: Herpetocypris sp., Cyprinotus? sp., Heterocypris? sp. 1 and sp. 2, Cypris? sp., Ilyocypris sp., Cytheroidea indet. sp. 1 and sp. 2, Limnocytheridae indet. sp. 1, Cypridoidea indet. sp. 1, Cyprididae indet. sp. 1, and Ostracoda indet. sp. 1, 2 and 3. Only Heterocypris sp. 1 occurs in both sections. Although the fauna can as yet not be related to the few other contemporaneous faunas reported from the wider palaeogeographic area, it adds important new information to our poor knowledge on Eocene non-marine ostracods in North Africa and southern Europe. The Méridja sections and area are promising regarding the discovery of more, better preserved material and further studies, and one main limitation to the correlation of the fauna is the hitherto insufficient taxonomic knowledge on many faunal elements of Eocene non-marine ostracods to which our section contributes considerably.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号