首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   178篇
  免费   9篇
  国内免费   1篇
  2023年   1篇
  2022年   4篇
  2021年   13篇
  2020年   8篇
  2019年   6篇
  2018年   15篇
  2017年   7篇
  2016年   5篇
  2015年   7篇
  2014年   9篇
  2013年   12篇
  2012年   14篇
  2011年   12篇
  2010年   5篇
  2009年   5篇
  2008年   10篇
  2007年   7篇
  2006年   5篇
  2005年   2篇
  2004年   5篇
  2003年   5篇
  2002年   3篇
  2001年   2篇
  2000年   2篇
  1999年   6篇
  1996年   1篇
  1991年   2篇
  1990年   1篇
  1989年   4篇
  1986年   4篇
  1985年   1篇
  1984年   2篇
  1981年   1篇
  1979年   2篇
排序方式: 共有188条查询结果,搜索用时 15 毫秒
1.
The metabolism of albendazole (ABZ), a benzimidazole anthelminthic, was studied in either microsomal preparations of human liver biopsies or cultured human hepatoma cell lines. Metabolites were analyzed by HPLC. Our data show that microsomes from human biopsies and two human cell lines, HepG2 and Hep3B, oxidize the drug to the sulfoxide very efficiently, whereas the third cell line tested, SK-HEP-1, does not. Both cytochrome P-450 dependent monooxygenases and favin-containing monooxygenases appear to be involved in human ABZ metabolism. Using the cell line displaying the highest ABZ-metabolizing activity, HepG2, the cytotoxic and the inducing effects of the parent drug ABZ and of two primary metabolites, the sulfoxide and the sulfone were studied. These three chemicals provoked a rise in mitotic index resulting from cell division blockage at the prophase or at the metaphase (ABZ metabolites) stage, and ABZ was more cytotoxic than its metabolites. With regard to enzyme-inducing effects, our data clearly demonstrate that the sulfoxide and, to a lesser degree, the sulfone are potent inducers of some drug metabolizing enzymes (i.e., cytochrome P-488 dependent monooxygenases and UDP glucuronyltransferase), whereas ABZ fails to increase and even slightly decreases these enzymatic activities. In conclusion, the HepG2 human hepatoma cell line appears to be suitable for the study of many parameters of metabolism and action of ABZ and other structurally related compounds in humans.Abbreviations ABZ albendazole - B[a]P benzo[a]pyrene - HPLC high-performance liquid chromatography - MC 3-methylcholanthrene - MFO mixed-function oxidase - UDPGT UDP-glucuronyltransferase  相似文献   
2.
NADPH:cytochrome P-450 (c) reductase is a microsomal enzyme which is involved in the cytochrome P-450-dependent biotransformation of many exogenous agents as well as of some endogenous molecules. Using cytochromec as a substrate, the kinetic parameters of this enzyme were determined in brain microsomes. The comparison of the NADPH:cytochrome P-450 reductase's Vmax values and cytochrome P-450 contents in both fractions, suggests a role of cerebral NADPH:cytochrome P-450 reductase in cytochrome P-450 independent pathways. This is also supported by the different developmental pattern of brain enzyme as compared to the liver enzyme, and by the presence of a relatively high NADPH:cytochrome P-450 reductase activity in immature rat brain and neuronal cultures, while cytochrome P-450 was hardly detectable in these preparations. The enzyme activity was not induced by a phenobarbital chronic treatment neither in the adult brain nor in cultured neurons, suggesting a different regulation of the brain enzyme expression.  相似文献   
3.
Whereas mare corpus luteum does not produce androgens or estrogens in vivo, the incubation of mare corpus luteum microsomes with progesterone and NADPH resulted in 17 alpha-hydroxyprogesterone and estrogen production with a small yield of androstenedione. In the presence of an aromatase inhibitor (4-hydroxyandrostenedione), 17 alpha-hydroxyprogesterone and androstenedione were accumulated. Aromatization of testosterone and androstenedione occurred via stereospecific loss of the 1 beta, 2 beta hydrogen atoms and was inhibited by MgCl2, KCl, and EDTA. The Km of estrogen synthetase from equine corpus luteum for testosterone was 18.5 +/- 2.7 nM and for androstenedione was 11.5 +/- 1.5 nM. 19-Norandrogens were aromatized with a slightly higher efficiency than were androgens, but the affinity of the aromatase was lower for 19-norandrogens than for androgens. Our results suggest that aromatases from equine testis and corpus luteum are closely related enzymes. On the other hand, the question arises as to the relationship among the cell origin, the synthetizing abilities, and in vivo production of the corpus luteum in different mammalian species.  相似文献   
4.
Fatty acids behave as activators of the aP2 gene expression in committed, lipid-free, non-terminally differentiated Ob1771 cells. Like fatty acids, dexamethasone provokes a dose-dependent accumulation of aP2 mRNA. However, fatty acids and dexamethasone act through different mechanisms to activate the aP2 gene expression since i) fatty acids and dexamethasone act in a synergistic manner; ii) the effect of dexamethasone is rapid and transient (maximal effect after 8 h), whereas that of fatty acids is slower, and maintained as long as the inducer is present and is fully reversible upon fatty acid removal; iii) the induction of the aP2 gene expression by dexamethasone does not require ongoing protein synthesis, while the response to fatty acids is completely prevented by cycloheximide; and iv) the induction of the aP2 gene expression by fatty acids but not by dexamethasone is confined to preadipocyte cell lines. This suggests that the process of activation by fatty acids, rather than the expression of the aP2 gene, is unique to adipose cells. Besides their effects on the aP2 gene, fatty acids activate the expression of the acyl CoA synthetase gene which encodes another protein involved in fatty acid metabolism. Activation of both genes by fatty acids appears not to be mediated by the CCAAT enhancer binding protein, a nuclear factor reported as transactivator of the aP2 promoter activity, since the enhancer binding protein mRNA is not expressed under these conditions.  相似文献   
5.
Virologica Sinica - Hepatitis C virus (HCV) is still one of the main causes of liver disease worldwide. Metabolic disorders, including non-alcoholic fatty liver disease (NAFLD), induced by HCV have...  相似文献   
6.
Molecular Biology Reports - The current study was set to assess the effect of heat stress exposure on oxidative stress, apoptosis, and endoplasmic reticulum stress markers in the cerebellum of male...  相似文献   
7.
8.
9.
Brown adipose tissue (BAT) has long been thought to be absent or very scarce in human adults so that its contribution to energy expenditure was not considered as relevant. The recent discovery of thermogenic BAT in human adults opened the field for innovative strategies to combat overweight/obesity and associated diseases. This energy-dissipating function of BAT is responsible for adaptive thermogenesis in response to cold stimulation. In this context, adipocytes can be converted, within white adipose tissue (WAT), into multilocular adipocytes expressing UCP1, a mitochondrial protein that plays a key role in heat production by uncoupling the activity of the respiratory chain from ATP synthesis. These adipocytes have been named “brite” or “beige” adipocytes. Whereas BAT has been studied for a long time in murine models both in vivo and in vitro, there is now a strong demand for human cellular models to validate and/or identify critical factors involved in the induction of a thermogenic program within adipocytes. In this review we will discuss the different human cellular models described in the literature and what is known regarding the regulation of their differentiation and/or activation process. In addition, the role of microRNAs as novel regulators of brown/“brite” adipocyte differentiation and conversion will be depicted. Finally, investigation of both the conversion and the metabolism of white-to-brown converted adipocytes is required for the development of therapeutic strategies targeting overweight/obesity and associated diseases. This article is part of a Special Issue entitled Brown and White Fat: From Signaling to Disease.  相似文献   
10.
Mesenchymal stem cells (MSCs) are a major component of various forms of tissue engineering. MSCs have self-renewal and multidifferential potential. Osteogenic differentiation of MSCs is an area of attention in bone regeneration. One form of MSCs are adipose-derived stem cells (ASCs), which can be simply harvested and differentiated into several cell lineages, such as chondrocytes, adipocytes, or osteoblasts. Due to special properties, ASCs are frequently used in vitro and in vivo bone regeneration. Identifying factors involved in osteogenic differentiation of ASCs is important for better understanding the mechanism of osteogenic differentiation. Different methods are used to stimulate osteogenesis of ASCs in literature, including common osteogenic media, growth factors, hormones, hypoxia, mechanical and chemical stimuli, genetic modification, and nanotechnology. This review article provides an overview describing the isolation procedure, characterization, properties, current methods for osteogenic differentiation of ASCs, and their basic biological mechanism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号