首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   299篇
  免费   14篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2020年   3篇
  2019年   7篇
  2018年   7篇
  2017年   4篇
  2016年   9篇
  2015年   16篇
  2014年   11篇
  2013年   18篇
  2012年   25篇
  2011年   24篇
  2010年   17篇
  2009年   21篇
  2008年   27篇
  2007年   10篇
  2006年   13篇
  2005年   14篇
  2004年   25篇
  2003年   14篇
  2002年   11篇
  2001年   7篇
  2000年   5篇
  1999年   8篇
  1998年   1篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
排序方式: 共有313条查询结果,搜索用时 15 毫秒
1.
InDrosophila, unlike humans, the lysosomal acid phosphatase (Acph-1) is a non-essential enzyme. It is also one of the most rapidly evolving gene-enzyme systems in the genus. In order to determine which parts of the enzyme are conserved and which parts are apparently under little functional constraint, we cloned the gene fromDrosophila melanogaster via a chromosomal walk. Fragments from the gene were used to recover an apparently full-length cDNA. The cDNA was subcloned into aDrosophila transformation vector where it was under the control of the 5 promoter sequence of thehsp-70 gene. Three independent transformants were obtained; in each, Acph-1 expression from the cDNA was constitutive and not dependent on heat shock, as determined by densitometric analyses of the allozymic forms of the enzyme. The pattern of expression indicates thehsp-70 and endogenousAcph-1 promoters act together in some, but not all, tissues. The sequence of the cDNA was determined using deletions made with exonuclease III, and primers deduced from the cDNA sequence were used to sequence the genomic clone. Five introns were found, and putative 5 up-stream regulatory sequences were identified. Amino acid sequence comparisons have revealed several highly conserved motifs betweenDrosophila Acph-1 and vertebrate lysosomal and prostatic acid phosphatases.  相似文献   
2.
InDrosophila, unlike humans, the lysosomal acid phosphatase (Acph-1) is a non-essential enzyme. It is also one of the most rapidly evolving gene-enzyme systems in the genus. In order to determine which parts of the enzyme are conserved and which parts are apparently under little functional constraint, we cloned the gene fromDrosophila melanogaster via a chromosomal walk. Fragments from the gene were used to recover an apparently full-length cDNA. The cDNA was subcloned into aDrosophila transformation vector where it was under the control of the 5′ promoter sequence of thehsp-70 gene. Three independent transformants were obtained; in each, Acph-1 expression from the cDNA was constitutive and not dependent on heat shock, as determined by densitometric analyses of the allozymic forms of the enzyme. The pattern of expression indicates thehsp-70 and endogenousAcph-1 promoters act together in some, but not all, tissues. The sequence of the cDNA was determined using deletions made with exonuclease III, and primers deduced from the cDNA sequence were used to sequence the genomic clone. Five introns were found, and putative 5′ up-stream regulatory sequences were identified. Amino acid sequence comparisons have revealed several highly conserved motifs betweenDrosophila Acph-1 and vertebrate lysosomal and prostatic acid phosphatases.  相似文献   
3.
RNA synthesis in the nuclei of liver from newly hatched chicks was enhanced 1.25 fold at 10 min after intragastric administration of water. Differential inhibition of RNA synthesis by alpha-amanitin indicated that the enhancement mainly represented rRNA synthesis; the synthesis of mRNA and tRNA was scarcely affected. Enhanced RNA synthesis was accompanied by greater susceptibility of nuclei to digestion by micrococcal nuclease, indicating that the chromatin structure was modified. It was further shown that the "water effect" was mimicked by distention of the stomach by raising the pressure in the intragastric balloon. Since the prior administration of atropine abolished the "water effect", the enhancement of hepatic RNA synthesis may be mediated by hepatic nervous system.  相似文献   
4.
5.
Impaired mitochondrial oxidative phosphorylation (OXPHOS) has been proposed as an etiological mechanism underlying insulin resistance. However, the initiating organ of OXPHOS dysfunction during the development of systemic insulin resistance has yet to be identified. To determine whether adipose OXPHOS deficiency plays an etiological role in systemic insulin resistance, the metabolic phenotype of mice with OXPHOS–deficient adipose tissue was examined. Crif1 is a protein required for the intramitochondrial production of mtDNA–encoded OXPHOS subunits; therefore, Crif1 haploinsufficient deficiency in mice results in a mild, but specific, failure of OXPHOS capacity in vivo. Although adipose-specific Crif1-haploinsufficient mice showed normal growth and development, they became insulin-resistant. Crif1-silenced adipocytes showed higher expression of chemokines, the expression of which is dependent upon stress kinases and antioxidant. Accordingly, examination of adipose tissue from Crif1-haploinsufficient mice revealed increased secretion of MCP1 and TNFα, as well as marked infiltration by macrophages. These findings indicate that the OXPHOS status of adipose tissue determines its metabolic and inflammatory responses, and may cause systemic inflammation and insulin resistance.  相似文献   
6.
Extracellular acidification occurs not only in pathological conditions such as inflammation and brain ischemia, but also in normal physiological conditions such as synaptic transmission. Acid-sensing ion channels (ASICs) can detect a broad range of physiological pH changes during pathological and synaptic cellular activities. ASICs are voltage-independent, proton-gated cation channels widely expressed throughout the central and peripheral nervous system. Activation of ASICs is involved in pain perception, synaptic plasticity, learning and memory, fear, ischemic neuronal injury, seizure termination, neuronal degeneration, and mechanosensation. Therefore, ASICs emerge as potential therapeutic targets for manipulating pain and neurological diseases. The activity of these channels can be regulated by many factors such as lactate, Zn2+, and Phe-Met-Arg-Phe amide (FMRFamide)-like neuropeptides by interacting with the channel’s large extracellular loop. ASICs are also modulated by G protein-coupled receptors such as CB1 cannabinoid receptors and 5-HT2. This review focuses on the physiological roles of ASICs and the molecular mechanisms by which these channels are regulated. [BMB Reports 2013; 46(6): 295-304]  相似文献   
7.
Achene size and shape, surface sculpturing, and pericarp and testa wall structure of 23 Korean Saussurea spp. were investigated using scanning electron microscopy (SEM) and light microscopy to evaluate the infrageneric relationships and assess their systematic significance. Achene size categories and thickness of the testa epidermis were distinguished using biometric measurements. Four basic types of surface pattern were observed: (1) lineate; (2) striate; (3) reticulate; and (4) colliculate. Saussurea rorinsanensis was found to have some unique achene characteristics, such as a fusiform achene, uniform pappus, presence of epidermal hairs and tangentially elongated, narrow testa epidermal cells. The characteristic achene features for species were found to be achene size and shape, hilum position, surface sculpture, pappus composition, morphology of the pericarp wall and thickness of the testa epidermis. Based on 16 morphological and achene characters, a cladistic analysis resolved three well‐supported clades, with S. eriophylla as the first‐branching taxon. Saussurea pulchella and S. japonica, both belonging to Saussurea subgenus Theodorea, were distant from each other in the 50% majority rule consensus tree and the character distribution cladogram. This cladistic analysis of achene morphology and anatomy should be regarded as giving us a tentative picture of the phylogenetics of Saussurea, and this study may serve as a reference for future hypotheses and studies on the characterization and classification of Saussurea spp. in Korea.  相似文献   
8.
Activated hepatic stellate cells (HSCs) are the main producers of extracellular matrix in the fibrotic liver and contribute to hepatic inflammation through the secretion of chemokines and the recruitment of leukocytes. This study assesses the function of CD40 on human HSCS: Activated human HSCs express CD40 in culture and in fibrotic liver, as determined by flow cytometry, RT-PCR, and immunohistochemistry. CD40 expression is strongly enhanced by IFN-gamma. Stimulation of CD40 with CD40 ligand (CD40L)-transfected baby hamster kidney cells induces NF-kappaB, as demonstrated by the activation of I-kappaB kinase (IKK), increased NF-kappaB DNA binding, and p65 nuclear translocation. CD40-activated IKK also phosphorylates a GST-p65 substrate at serine 536 in the transactivation domain 1. Concomitant with the activation of IKK, CD40L-transfected baby hamster kidney cell treatment strongly activates c-Jun N-terminal kinase. CD40 activation increases the secretion of IL-8 and monocyte chemoattractant protein-1 by HSCs 10- and 2-fold, respectively. Adenovirally delivered dominant negative (dn) IKK2 and TNFR-associated factor 2dn inhibit IKK-mediated GST-I-kappaB and GST-p65 phosphorylation, NF-kappaB binding, and IL-8 secretion, whereas IKK1dn and NF-kappaB-inducing kinase dominant negative do not have inhibitory effects. We conclude that the CD40-CD40L receptor-ligand pair is involved in a cross-talk between HSCs and immune effector cells that contributes to the perpetuation of HSC activation in liver fibrosis through TNFR-associated factor 2- and IKK2-dependent pathways.  相似文献   
9.
Kim IC  Kweon HS  Kim YJ  Kim CB  Gye MC  Lee WO  Lee YS  Lee JS 《Gene》2004,336(2):147-153
We isolated Acanthogobius hasta mitochondrial DNA by long-polymerase chain reaction (long-PCR) with conserved primers, and sequenced this mitogenome with primer walking. The resultant A. hasta mitochondrial DNA sequence was found to consist of 16,663 bp with a structural organization conserved relative to that of other fish. In this paper, we report the basic characteristics of the A. hasta mitochondrial genome including structural organization, base composition of rRNAs and the tRNAs and protein-encoding genes, and characteristics of mitochondrial tRNAs. These findings are applicable to molecular phylogenetics in the suborder Gobioidei.  相似文献   
10.
The cyclohexanone monooxygenase (CHMO) gene of Acinetobacter sp. NCIMB 9871 was simultaneously expressed with the genes encoding molecular chaperones and foldases in Escherichia coli. While the expression of the CHMO gene alone resulted in the formation of inclusion bodies, coexpression of the chaperone or foldase genes remarkably increased the production of soluble CHMO enzyme in recombinant E. coli. Furthermore, it was found that molecular chaperones were more beneficial than foldases for enhancing active CHMO enzyme production. The recombinant E. coli strain simultaneously expressing the genes for CHMO, GroEL/GroES and DnaK/DnaJ/GrpE showed a specific CHMO activity of 111 units g–1 cell protein, corresponding to a 38-fold enhancement in CHMO activity compared with the control E. coli strain expressing the CHMO gene alone.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号