首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84篇
  免费   6篇
  2022年   1篇
  2021年   3篇
  2020年   3篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2016年   5篇
  2015年   7篇
  2014年   5篇
  2013年   6篇
  2012年   10篇
  2011年   9篇
  2010年   3篇
  2009年   5篇
  2008年   3篇
  2007年   4篇
  2006年   2篇
  2005年   5篇
  2004年   2篇
  2003年   2篇
  2002年   3篇
  1998年   1篇
  1995年   1篇
  1992年   1篇
  1986年   1篇
  1981年   1篇
  1973年   1篇
  1965年   1篇
排序方式: 共有90条查询结果,搜索用时 15 毫秒
1.
The anthers of three genotypes ofLycopersicon esculentum, viz. cv. HS-101, cv. HS-102 and an F1 hybrid (Montfavet 63-4xHS-101) in different stages of development were cultured in various defined nutritive media. Only anthers containing microspores in the early uninucleate stage were found to respond with the culture medium in the formation of androgenic callus. The DGII medium with 2 mg l−1 NAA and 1 mg 1−1 kinetin was found to be best for callus induction but MS medium supplemented with 2 mg l−1 2,4-D and 0.1 mg 1−1 BAP favoured proliferation and growth of the callus. The androgenic microspores followed the ‘B’ type pathway of androgenesis in the formation of callus. Induction of tracheids in the callus could be achieved by supplementing the basal medium with NAA and kinetin or 2,4-D and BAP. Initiation of vessel elements and cambium were favoured by addition of NAA and kinetin and that of the phloem in the presence of 2,4-D and BAP in the basal medium, suggesting that the hormonal requirements for production of different elements of the vascular system in androgenic callus are different. Although roots could be induced from the callus, shoot differentiation could not be achieved under cultural conditions.  相似文献   
2.
3.
Solanum lycopersicum and Solanum tuberosum are agriculturally important crop species as they are rich sources of starch, protein, antioxidants, lycopene, beta-carotene, vitamin C, and fiber. The genomes of S. lycopersicum and S. tuberosum are currently available. However the linear strings of nucleotides that together comprise a genome sequence are of limited significance by themselves. Computational and bioinformatics approaches can be used to exploit the genomes for fundamental research for improving their varieties. The comparative genome analysis, Pfam analysis of predicted reviewed paralogous proteins was performed. It was found that S. lycopersicum proteins belong to more families, domains and clans in comparison with S. tuberosum. It was also found that mostly intergenic regions are conserved in two genomes followed by exons, intron and UTR. This can be exploited to predict regions between genomes that are similar to each other and to study the evolutionary relationship between two genomes, leading towards the development of disease resistance, stress tolerance and improved varieties of tomato.  相似文献   
4.
5.
6.
The central role of human pancreatic glucokinase in insulin secretion and, consequently, in maintenance of blood glucose levels has prompted investigation into identification of ATP-binding site residues and examination of ATP- and glucose-binding interactions. Because glucokinase has been resistant to crystallization, computer generated homology models were developed based on the X-ray crystal structure of the COOH-terminal domain of human brain hexokinase 1 bound to glucose and ADP or glucose and glucose-6-phosphate. Human pancreatic glucokinase mutants were designed based upon these models and on ATPase domain sequence conservation to identify and characterize potential glucose and ATP-binding sites. Specifically, mutants Asp78Ala, Thr82Ala, Lys90Ala, Lys102Ala, Gly227Ala, Thr228Ala, Ser336Leu, Ser411Ala, and Ser411Leu were constructed, expressed, purified, and kinetically characterized under steady-state conditions. Compared to their respective wild type controls, several mutants demonstrated dramatic changes in V(max), cooperativity of glucose binding and S(0.5) for ATP and glucose. Results suggest a role for Asp78, Thr82, Gly227, Thr228, and Ser336 in ATP binding and indicate these residues are essential for glucose phosphorylation by human pancreatic glucokinase.  相似文献   
7.
Present study investigates the cultivable diversity of root-associated bacteria from a medicinal plant Ajuga bracteosa in the Kangra valley, in order to determine their plant growth promoting (PGP) and biotechnological potential. The plant was found to exhibit a positive rhizosphere effect of 1.3-1.5. A total of 123 morphologically different bacteria were isolated from the rhizospheric soil and roots of the plant. Medium composition was found to have significant effect on the composition of isolated bacterial populations. Majority of the rhizospheric soil isolates belonged to α- and γ-Proteobacteria, with Pseudomonas constituting the most dominant species. Endophytic bacterial community, on other hand, consisted almost exclusively of Firmicutes. Majority of the isolates showed PGP activity by producing siderophores and indole acetic acid. Several isolates were found to exhibit very high antioxidant activity in the culture medium. A significant proportion of isolates also demonstrated other ecologically important activities like phosphate solubilization, nitrogen fixation, and production of hydrolytic enzymes including amylase, protease, lipase, chitinase, cellulase, pectinase and phosphatase. Firmicutes were found to be metabolically the most versatile group and performed multiple enzyme activities. This is the first systematic study of culturable bacterial community from the rhizosphere of A. bracteosa, particularly in the Kangra valley region.  相似文献   
8.
Physiological changes induced by chromium stress in plants: an overview   总被引:1,自引:0,他引:1  
This article presents an overview of the mechanism of chromium (Cr) stress in plants. Toxic effects of Cr on plant growth and development depend primarily on its valence state. Cr(VI) is highly toxic and mobile whereas Cr(III) is less toxic. Cr-induced oxidative stress involves induction of lipid peroxidation in plants that cause severe damage to cell membranes which includes degradation of photosynthetic pigments causing deterioration in growth. The potential of plants with the adequacy to accumulate or to stabilize Cr compounds for bioremediation of Cr contamination has gained engrossment in recent years.  相似文献   
9.
Trichomonas vaginalis causes the trichomoniasis, in women and urethritis and prostate cancer in men. Its genome draft published by TIGR in 2007 presents many unusual genomic and biochemical features like, exceptionally large genome size, the presence of hydrogenosome, gene duplication, lateral gene transfer mechanism and the presence of miRNA. To understand some of genomic features we have performed a comparative analysis of metabolic pathways of the T. vaginalis with other 22 significant common organisms. Enzymes from the biochemical pathways of T. vaginalis and other selected organisms were retrieved from the KEGG metabolic pathway database. The metabolic pathways of T. vaginalis common in other selected organisms were identified. Total 101 enzymes present in different metabolic pathways of T. vaginalis were found to be orthologous by using BLASTP program against the selected organisms. Except two enzymes all identified orthologous enzymes were also identified as paralogous enzymes. Seventy-five of identified enzymes were also identified as essential for the survival of T. vaginalis, while 26 as non-essential. The identified essential enzymes also represent as good candidate for novel drug targets. Interestingly, some of the identified orthologous and paralogous enzymes were found playing significant role in the key metabolic activities while others were found playing active role in the process of pathogenesis. The N-acetylneuraminate lyase was analyzed as the candidate of lateral genes transfer. These findings clearly suggest the active participation of lateral gene transfer and gene duplication during evolution of T. vaginalis from the enteric to the pathogenic urogenital environment.  相似文献   
10.
Toxoplasma gondii is an obligate intracellular apicomplexan parasite that can infect a wide range of warm-blooded animals including humans. In humans and other intermediate hosts, toxoplasma develops into chronic infection that cannot be eliminated by host's immune response or by currently used drugs. In most cases, chronic infections are largely asymptomatic unless the host becomes immune compromised. Thus, toxoplasma is a global health problem and the situation has become more precarious due to the advent of HIV infections and poor toleration of drugs used to treat toxoplasma infection, having severe side effects and also resistance have been developed to the current generation of drugs. The emergence of these drug resistant varieties of T. gondii has led to a search for novel drug targets. We have performed a comparative analysis of metabolic pathways of the host Homo sapiens and the pathogen T. gondii. The enzymes in the unique pathways of T. gondii, which do not show similarity to any protein from the host, represent attractive potential drug targets. We have listed out 11 such potential drug targets which are playing some important work in more than one pathway. Out of these, one important target is Glutamate dehydrogenase enzyme; it plays crucial part in oxidation reduction, metabolic process and amino acid metabolic process. As this is also present in the targets of tropical diseases of TDR (Tropical disease related Drug) target database and no PDB and MODBASE 3D structural model is available, homology models for Glutamate dehydrogenase enzyme were generated using MODELLER9v6. The model was further explored for the molecular dynamics simulation study with GROMACS, virtual screening and docking studies with suitable inhibitors against the NCI diversity subset molecules from ZINC database, by using AutoDock-Vina. The best ten docking solutions were selected (ZINC01690699, ZINC17465979, ZINC17465983, ZINC18141294_03, ZINC05462670, ZINC01572309, ZINC18055497_01, ZINC18141294, ZINC05462674 and ZINC13152284_01). Further the Complexes were analyzed through LIGPLOT. On the basis of Complex scoring and binding ability it is deciphered that these NCI diversity set II compounds, specifically ZINC01690699 (as it has minimum energy score and one of the highest number of interactions with the active site residue), could be promising inhibitors for T. gondii using Glutamate dehydrogenase as Drug target.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号