首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   2篇
  2021年   1篇
  2019年   2篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   4篇
  2012年   5篇
  2011年   7篇
  2010年   5篇
  2009年   1篇
  2008年   4篇
  2007年   3篇
  2006年   5篇
  2005年   4篇
  2004年   5篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1995年   1篇
  1992年   1篇
  1991年   1篇
  1973年   1篇
排序方式: 共有60条查询结果,搜索用时 46 毫秒
1.
A natural lactic fermentation of mixtures of water and whole flour of either maize or high-tannin sorghum was obtained either before or after cooking to a weaning gruel: The preparations had a final pH of about 3.8 (range 3.67 to 4.00) and a ratio of lactic acid to acetic acid of 91 (w/w). The growth of added (about 107 c.f.u./g gruel) Gram-negative intestinal pathogenic bacteria, enterotoxigenicEscherichia coli, Campylobacter jejuni, Shigella flexneri andSalmonella typhimurium, was strongly inhibited in the sour gruels, and the effect could primarily be explained by the low pH caused by the formation of lactic and acetic acids during the fermentation process. Of the added Gram-positive bacteria,Bacillus cereus andStaphylococcus aureus showed similar inhibited growth up to 7h after inoculation in the sour gruels. The strain ofStaphylococcus, however, showed only a continued reduction in growth in the fermented gruel samples, which had a viable lactic bacteria culture indicating the presence of a bacteriocin. This implies that a low pH (< 4.0) alone is not sufficient to sustain the inhibition of the growth ofStaphylococcus aureus. The survival studies were carried out at optimal temperatures for each respective enteropathogen.  相似文献   
2.
The human histamine H4 receptor (hH4R), a member of the G-protein coupled receptors (GPCR) family, is an increasingly attractive drug target. It plays a key role in many cell pathways and many hH4R ligands are studied for the treatment of several inflammatory, allergic and autoimmune disorders, as well as for analgesic activity. Due to the challenging difficulties in the experimental elucidation of hH4R structure, virtual screening campaigns are normally run on homology based models. However, a wealth of information about the chemical properties of GPCR ligands has also accumulated over the last few years and an appropriate combination of these ligand-based knowledge with structure-based molecular modeling studies emerges as a promising strategy for computer-assisted drug design. Here, two chemoinformatics techniques, the Intelligent Learning Engine (ILE) and Iterative Stochastic Elimination (ISE) approach, were used to index chemicals for their hH4R bioactivity. An application of the prediction model on external test set composed of more than 160 hH4R antagonists picked from the chEMBL database gave enrichment factor of 16.4. A virtual high throughput screening on ZINC database was carried out, picking ∼4000 chemicals highly indexed as H4R antagonists'' candidates. Next, a series of 3D models of hH4R were generated by molecular modeling and molecular dynamics simulations performed in fully atomistic lipid membranes. The efficacy of the hH4R 3D models in discrimination between actives and non-actives were checked and the 3D model with the best performance was chosen for further docking studies performed on the focused library. The output of these docking studies was a consensus library of 11 highly active scored drug candidates. Our findings suggest that a sequential combination of ligand-based chemoinformatics approaches with structure-based ones has the potential to improve the success rate in discovering new biologically active GPCR drugs and increase the enrichment factors in a synergistic manner.  相似文献   
3.
Biomechanics and Modeling in Mechanobiology - Heart failure is a progressive chronic condition in which the heart undergoes detrimental changes in structure and function across multiple scales in...  相似文献   
4.
The two forms of monoamine oxidase, monoamine oxidase A and monoamine oxidase B, have been associated with imidazoline-binding sites (type 2). Imidazoline ligands saturate the imidazoline-binding sites at nanomolar concentrations, but inhibit monoamine oxidase activity only at micromolar concentrations, suggesting two different binding sites [Ozaita A, Olmos G, Boronat MA, Lizcano JM, Unzeta M & García-Sevilla JA (1997) Br J Pharmacol121, 901-912]. When purified human monoamine oxidase A was used to examine the interaction with the active site, inhibition by guanabenz, 2-(2-benzofuranyl)-2-imidazoline and idazoxan was competitive with kynuramine as substrate, giving K(i) values of 3 microM, 26 microM and 125 microM, respectively. Titration of monoamine oxidase A with imidazoline ligands induced spectral changes that were used to measure the binding affinities for guanabenz (19.3 +/- 3.9 microM) and 2-(2-benzofuranyl)-2-imidazoline (49 +/- 8 microM). Only one type of binding site was detected. Agmatine, a putative endogenous ligand for some imidazoline sites, reduced monoamine oxidase A under anaerobic conditions, indicating that it binds close to the flavin in the active site. Flexible docking studies revealed multiple orientations within the large active site, including orientations close to the flavin that would allow oxidation of agmatine.  相似文献   
5.
As a part of an investigation on molecular hybrids as new serine protease inhibitors, the pyrazolo [4,3-c][1,2,5]oxadiazin-3(5H)-one ring system was selected as a model of potential mechanism-based inhibitors. Due to the inherent reactivity of this system an optimal balance between susceptibility to nucleophilic attack and stability in solvents was sought prior to development as therapeutic agents. Substitutions on N5 and C7 of the supporting pyrazole ring with either aliphatic or aromatic groups (compounds 2 a-m) and the replacement of the carbonyl oxygen on the reactive oxadiazinone ring with sulfur (compounds 3a,i) were explored. Two members (2i and 2k) of this class of inhibitors displayed time-dependent inhibition of HLE suggesting mechanism-based inhibition. The observation that HLE generated a product(s) from compound 2i which displayed an identical UV-Visible spectrum to that observed during non-enzymatic hydrolysis further supports this proposal. FlexX-based docking of these compounds into a model of the human leukocyte elastase (HLE) active site produced a molecular model of the inhibitor-enzyme interaction.  相似文献   
6.
The lack of an appropriate three-dimensional constitutive relation for stress in passive ventricular myocardium currently limits the utility of existing mathematical models for experimental and clinical applications. Previous experiments used to estimate parameters in three-dimensional constitutive relations, such as biaxial testing of excised myocardial sheets or passive inflation of the isolated arrested heart, have not included significant transverse shear deformation or in-plane compression. Therefore, a new approach has been developed in which suction is applied locally to the ventricular epicardium to introduce a complex deformation in the region of interest, with transmural variations in the magnitude and sign of nearly all six strain components. The resulting deformation is measured throughout the region of interest using magnetic resonance tagging. A nonlinear, three-dimensional, finite element model is used to predict these measurements at several suction pressures. Parameters defining the material properties of this model are optimized by comparing the measured and predicted myocardial deformations. We used this technique to estimate material parameters of the intact passive canine left ventricular free wall using an exponential, transversely isotropic constitutive relation. We tested two possible models of the heart wall: first, that it was homogeneous myocardium, and second, that the myocardium was covered with a thin epicardium with different material properties. For both models, in agreement with previous studies, we found that myocardium was nonlinear and anisotropic with greater stiffness in the fiber direction. We obtained closer agreement to previously published strain data from passive filling when the ventricular wall was modeled as having a separate, isotropic epicardium. These results suggest that epicardium may play a significant role in passive ventricular mechanics.  相似文献   
7.
Tagged MRI and finite-element (FE) analysis are valuable tools in analyzing cardiac mechanics. To determine systolic material parameters in three-dimensional stress-strain relationships, we used tagged MRI to validate FE models of left ventricular (LV) aneurysm. Five sheep underwent anteroapical myocardial infarction (25% of LV mass) and 22 wk later underwent tagged MRI. Asymmetric FE models of the LV were formed to in vivo geometry from MRI and included aneurysm material properties measured with biaxial stretching, LV pressure measurements, and myofiber helix angles measured with diffusion tensor MRI. Systolic material parameters were determined that enabled FE models to reproduce midwall, systolic myocardial strains from tagged MRI (630 +/- 187 strain comparisons/animal). When contractile stress equal to 40% of the myofiber stress was added transverse to the muscle fiber, myocardial strain agreement improved by 27% between FE model predictions and experimental measurements (RMS error decreased from 0.074 +/- 0.016 to 0.054 +/- 0.011, P < 0.05). In infarct border zone (BZ), end-systolic midwall stress was elevated in both fiber (24.2 +/- 2.7 to 29.9 +/- 2.4 kPa, P < 0.01) and cross-fiber (5.5 +/- 0.7 to 11.7 +/- 1.3 kPa, P = 0.02) directions relative to noninfarct regions. Contrary to previous hypotheses but consistent with biaxial stretching experiments, active cross-fiber stress development is an integral part of LV systole; FE analysis with only uniaxial contracting stress is insufficient. Stress calculations from these validated models show 24% increase in fiber stress and 115% increase in cross-fiber stress at the BZ relative to remote regions, which may contribute to LV remodeling.  相似文献   
8.
9.
MicroRNA-mRNA interactions are commonly validated and deconstructed in cell lines transfected with luciferase reporters. However, due to cell type-specific variations in microRNA or RNA-binding protein abundance, such assays may not reliably reflect microRNA activity in other cell types that are less easily transfected. In order to measure miRNA activity in primary cells, we constructed miR-Sens, a MSCV-based retroviral vector that encodes both a Renilla luciferase reporter gene controlled by microRNA binding sites in its 3' UTR and a Firefly luciferase normalization gene. miR-Sens sensors can be efficiently transduced in primary cells such as human fibroblasts and mammary epithelial cells, and allow the detection of overexpressed and, more importantly, endogenous microRNAs. Notably, we find that the relative luciferase activity is correlated to the miRNA expression, allowing quantitative measurement of microRNA activity. We have subsequently validated the miR-Sens 3' UTR vectors with known human miRNA-372, miRNA-373, and miRNA-31 targets (LATS2 and TXNIP). Overall, we observe that miR-Sens-based assays are highly reproducible, allowing detection of the independent contribution of multiple microRNAs to 3' UTR-mediated translational control of LATS2. In conclusion, miR-Sens is a new tool for the efficient study of microRNA activity in primary cells or panels of cell lines. This vector will not only be useful for studies on microRNA biology, but also more broadly on other factors influencing the translation of mRNAs.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号