首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   0篇
  2015年   2篇
  2014年   1篇
  2013年   4篇
  2012年   5篇
  2011年   4篇
  2010年   1篇
  2009年   2篇
  2008年   5篇
  2007年   1篇
  2006年   3篇
  2005年   6篇
  2004年   4篇
  2002年   2篇
  2001年   6篇
  2000年   4篇
  1999年   1篇
  1997年   2篇
  1996年   1篇
  1995年   3篇
  1994年   3篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1989年   1篇
  1987年   1篇
  1986年   2篇
  1977年   1篇
  1975年   1篇
排序方式: 共有71条查询结果,搜索用时 31 毫秒
1.
Microtubule-associated protein tau was purified from bovine brain microtubules by either (1) phosphocellulose chromatography, (2) heat treatment at pH 6.4, (3) heat treatment at pH 2.7, (4) heat treatment at pH 2.7 followed by extraction with perchloric acid and precipitation with glycerol, or (5) by precipitation with ammonium sulfate followed by extraction with perchloric acid. All of these tau preparations reacted specifically with antibodies to Alzheimer paired helical filaments. Affinity purified antibodies to tau labeled both Alzheimer neurofibrillary tangles and plaque neurites but not amyloid in Alzheimer brain tissue sections and labeled paired helical filament polypeptides on Western blots. Human brain tau and paired helical filament polypeptides co-migrated on sodium dodecyl sulfate-polyacrylamide gels. These results suggest that tau is a major component of Alzheimer paired helical filaments.  相似文献   
2.
A subcellular fraction enriched in twisted tubules was obtained by differential centrifugation of a homogenate of neurons isolated from areas of the brain with many neurofibrillary tangles from patients with Alzheimer's presenile-senile dementia. A unique protein (molecular weight 50,000 daltons) which does not co-migrate with either of the two tubulin monomers of the major neurofilament protein, both purified from human brain, was found in this subcellular fraction on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Similarly processed tissue from areas of the brain poor in neurofibrillary tangles contained low levels of this new protein. The new protein band could not be seen in control patients.  相似文献   
3.
Neurofibrillary pathology of abnormally hyperphosphorylated Tau is a key lesion of Alzheimer disease and other tauopathies, and its density in the brain directly correlates with dementia. The phosphorylation of Tau is regulated by protein phosphatase 2A, which in turn is regulated by inhibitor 2, I2PP2A. In acidic conditions such as generated by brain ischemia and hypoxia, especially in association with hyperglycemia as in diabetes, I2PP2A is cleaved by asparaginyl endopeptidase at Asn-175 into the N-terminal fragment (I2NTF) and the C-terminal fragment (I2CTF). Both I2NTF and I2CTF are known to bind to the catalytic subunit of protein phosphatase 2A and inhibit its activity. Here we show that the level of activated asparaginyl endopeptidase is significantly increased, and this enzyme and I2PP2A translocate, respectively, from neuronal lysosomes and nucleus to the cytoplasm where they interact and are associated with hyperphosphorylated Tau in Alzheimer disease brain. Asparaginyl endopeptidase from Alzheimer disease brain could cleave GST-I2PP2A, except when I2PP2A was mutated at the cleavage site Asn-175 to Gln. Finally, an induction of acidosis by treatment with kainic acid or pH 6.0 medium activated asparaginyl endopeptidase and consequently produced the cleavage of I2PP2A, inhibition of protein phosphatase 2A, and hyperphosphorylation of Tau, and the knockdown of asparaginyl endopeptidase with siRNA abolished this pathway in SH-SY5Y cells. These findings suggest the involvement of brain acidosis in the etiopathogenesis of Alzheimer disease, and asparaginyl endopeptidase-I2PP2A-protein phosphatase 2A-Tau hyperphosphorylation pathway as a therapeutic target.  相似文献   
4.
Sato Y  Naito Y  Grundke-Iqbal I  Iqbal K  Endo T 《FEBS letters》2001,496(2-3):152-160
In a previous study [Wang et al. (1996) Nat. Med. 2, 871-875], Wang et al. found (i) that abnormally hyperphosphorylated tau (AD P-tau) isolated from Alzheimer's disease (AD) brain as paired helical filaments (PHF)-tau and as cytosolic AD P-tau but not tau from normal brain were stained by lectins, and (ii) that on in vitro deglycosylation the PHF untwisted into sheets of thin straight filaments, suggesting that tau only in AD brains is glycosylated. To elucidate the primary structure of N-glycans, we comparatively analyzed the N-glycan structures obtained from PHF-tau and AD P-tau. More than half of N-glycans found in PHF-tau and AD P-tau were different. High mannose-type sugar chains and truncated N-glycans were found in both taus in addition to a small amount of sialylated bi- and triantennary sugar chains. More truncated glycans were richer in PHF-tau than AD P-tau. This enrichment of more truncated glycans in PHF might be involved in promoting the assembly and or stabilizing the pathological fibrils in AD.  相似文献   
5.
The role of the phosphatidylinositol 3-kinase (PI3K) pathway in the hyperphosphorylation of tau was investigated in SY5Y human neuroblastoma cells. Wortmannin, an inhibitor of PI3K, induced transient (after 1 h) activation of glycogen synthase kinase-3 (GSK-3), hyperphosphorylation of tau and dose-dependent cytotoxicity. However, continuous inactivation of protein kinase (PK) B was observed from 1 to 24 h, suggesting the involvement of protein kinase(s) other than PKB in the phosphorylation and inactivation of GSK-3 after 3 h. In cells treated with wortmannin, PKC delta fragments were observed, and the PKC activity increased after 3 h, whereas treatment of cells with z-DEVD-fmk, an inhibitor of caspase 3, also inhibited fragmentation of PKC delta and induced continuous activation of GSK-3. It is suggested that fragmentation of PKC delta during the process of apoptosis results in the phosphorylation and inactivation of GSK-3 and consequently inhibition of the phosphorylation of tau.  相似文献   
6.
Protein phosphatase 5 (PP5) is a 58-kDa novel phosphoseryl/phosphothreonyl protein phosphatase. It is ubiquitously expressed in all mammalian tissues examined, with a high level in the brain, but little is known about its physiological substrates. We found that this phosphatase dephosphorylated recombinant tau phosphorylated with cAMP-dependent protein kinase and glycogen synthase kinase-3beta, as well as abnormally hyperphosphorylated tau isolated from brains of patients with Alzheimer's disease. The specific activity of PP5 toward tau was comparable to those reported with other protein substrates examined to date. The PP5 activity toward tau was stimulated by arachidonic acid by 30- to 45-fold. Immunostaining demonstrated that PP5 was primarily cytoplasmic in PC12 cells and in neurons of postmortem human brain tissue. A small pool of PP5 associated with microtubules. Expression of active PP5 in PC12 cells resulted in reduced phosphorylation of tau, suggesting that PP5 can also dephosphorylate tau in cells. These results suggest that PP5 plays a role in the dephosphorylation of tau and might be involved in the molecular pathogenesis of Alzheimer's disease.  相似文献   
7.
Two groups of tau, 3R- and 4R-tau, are generated by alternative splicing of tau exon 10. Normal adult human brain expresses equal levels of them. Disruption of the physiological balance is a common feature of several tauopathies. Very early in their life, individuals with Down syndrome (DS) develop Alzheimer-type tau pathology, the molecular basis for which is not fully understood. Here, we demonstrate that Dyrk1A, a kinase encoded by a gene in the DS critical region, phosphorylates alternative splicing factor (ASF) at Ser-227, Ser-234, and Ser-238, driving it into nuclear speckles and preventing it from facilitating tau exon 10 inclusion. The increased dosage of Dyrk1A in DS brain due to trisomy of chromosome 21 correlates to an increase in 3R-tau level, which on abnormal hyperphosphorylation and aggregation of tau results in neurofibrillary degeneration. Imbalance of 3R- and 4R-tau in DS brain by Dyrk1A-induced dysregulation of alternative splicing factor-mediated alternative splicing of tau exon 10 represents a novel mechanism of neurofibrillary degeneration and may help explain early onset tauopathy in individuals with DS.  相似文献   
8.
9.
Promotion of hyperphosphorylation by frontotemporal dementia tau mutations   总被引:5,自引:0,他引:5  
Mutations in the tau gene are known to cosegregate with the disease in frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17). However, the molecular mechanism by which these mutations might lead to the disease is not understood. Here, we show that four of the FTDP-17 tau mutations, R406W, V337M, G272V, and P301L, result in tau proteins that are more favorable substrates for phosphorylation by brain protein kinases than the wild-type, largest four-repeat protein tau4L and tau4L more than tau3L. In general, at all the sites studied, mutant tau proteins were phosphorylated faster and to a higher extent than tau4L and tau4L > tau3L. The most dramatic difference found was in the rate and level of phosphorylation of tau4L(R406W) at positions Ser-396, Ser-400, Thr-403, and Ser-404. Phosphorylation of this mutant tau was 12 times faster and 400% greater at Ser-396 and less than 30% at Ser-400, Thr-403, and Ser-404 than phosphorylation of tau4L. The mutated tau proteins polymerized into filaments when 4-6 mol of phosphate per mol of tau were incorporated, whereas wild-type tau required approximately 10 mol of phosphate per mol of protein to self-assemble. Mutated and wild-type tau proteins were able to sequester normal tau upon incorporation of approximately 4 mol of phosphate per mol of protein, which was achieved at as early as 30 min of phosphorylation in the case of mutant tau proteins. These findings taken together suggest that the mutations in tau might cause neurodegeneration by making the protein a more favorable substrate for hyperphosphorylation.  相似文献   
10.
Abstract: Microtubule-associated protein τ is abnormally hyperphosphorylated and aggregated in affected neurons of Alzheimer disease brain. This hyperphosphorylated τ can be dephosphorylated at some of the abnormal phosphorylated sites by purified protein phosphatase-1, 2A, and 2B in vitro. In the present study, we have developed an assay to measure protein phosphatase activity toward τ-1 sites (Ser199/Ser202) using the hyperphosphorylated τ isolated from Alzheimer disease brain as substrate. Using this assay, we have identified that in normal brain, protein phosphatase-2A and 2B and, to a lesser extent, 1 are involved in the dephosphorylation of τ. The K m values of dephosphorylation of the hyperphosphorylated τ by protein phosphatase-2A and 2B are similar. The τ phosphatase activity is decreased by ∼30% in brain of Alzheimer disease patients compared with those of age-matched controls. These findings suggest that a defect of protein phosphatase could be the cause of the abnormal hyperphosphorylation of τ in Alzheimer disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号