首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   1篇
  2019年   1篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1997年   4篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
2.
Insects, unlike plants and vertebrates, lack the ability to biosynthesize sterols. Cholesterol is typically the most common sterol found in plant-feeding insects, but it is rarely found in plants above trace levels, so plant-feeding insects must produce the cholesterol they need by metabolizing the sterols found in the plants they eat. Plant-feeding insects are, however, often limited in terms of which sterols can be converted to cholesterol. In the current study we used a transgenic tobacco plant line that displays high levels of atypical plant steroids, specifically stanols and ketone-steroids, to explore how novel steroid structural features affect performance in three economically important caterpillars (Heliothis virescens, Spodoptera exigua, and Manduca sexta). For each species we measured pupation success, larval development, pupal mass, pupal development, and eclosion success. For the two generalists species (H. virescens and S. exigua) we also measured egg production and egg viability. We then used these eggs to replicate the experiment, so that we could examine the effect of parental steroid dietary history on survival, growth and reproduction of 2nd-generation individuals. Significant negative effects of novel steroids on larval and pupal performance were observed for each caterpillar in the first generation, although these were often subtle, and were not consistent between the three species. In the second generation, larval survival estimated by 'pupation number/plant' on the tobacco plants with novel steroids was significantly reduced, while eclosion success was significantly lower for H. virescens. With respect to adult reproduction (i.e. egg production and egg viability) there were no observed differences in the first generation, but novel steroids significantly negatively impacted reproduction in the second generation. The findings from this study, when integrated into a simple population growth model, demonstrate the potential in using plants with modified steroids as a novel approach to manage populations of economically important caterpillar species.  相似文献   
3.
We report the characterization of a higher-plant C-24 sterol methyltransferase by yeast complementation. A Zea mays endosperm expressed sequence tag (EST) was identified which, upon complete sequencing, showed 46% identity to the yeast C-24 methyltransferase gene (ERG6) and 75% and 37% amino acid identity to recently isolated higher-plant sterol methyltransferases from soybean and Arabidopsis, respectively. When placed under GAL4 regulation, the Z. mays cDNA functionally complemented the erg6 mutation, restoring ergosterol production and conferring resistance to cycloheximide. Complementation was both plasmid-dependent and galactose-inducible. The Z. mays cDNA clone contains an open reading frame encoding a 40 kDa protein containing motifs common to a large number of S-adenosyl-L-methionine methyltransferases (SMTs). Sequence comparisons and functional studies of the maize, soybean and Arabidopsis cDNAs indicates two types of C-24 SMTs exist in higher plants.  相似文献   
4.
The green-fluorescent protein (GFP) from Aequorea victoria has been shown to be a convenient and flexible reporter molecule within a variety of eukaryotic systems, including higher plants. It is particularly suited for applications in vivo, since the mechanism of fluorophore formation involves an intramolecular autoxidation and does not require exogenous co-factors. Unlike standard histochemical procedures of fixation and staining required for analysis of the cellular or tissue-specific expression of other popular reporter molecules, such as the β-glucuronidase (GUS) marker, analysis of GFP can be done in living cells with no specific pretreatments. This implies that GFP might also be particularly suited for studies of intracellular protein targeting. In this paper, the use of GUS is compared with that of GFP for the analysis of nuclear targeting in tobacco. A novel oligopeptide motif from a tobacco protein is described which confers nuclear localization of GUS. The use of this oligopeptide and two from potyviral proteins to target GFP to the nucleus is examined. An essential modification of GFP is described, which specifically increases its molecular weight to eliminate its passive penetration into the nucleus. Three examples of the targeting of these enlarged GFP molecules to the nucleus are illustrated. GFP, in combination with confocal microscopy, offers significant advantages over traditional methods of studying nuclear targeting.  相似文献   
5.
The proximate forces that create omnivores out of herbivores and predators have long fascinated ecologists, but the causal reasons for a shift to omnivory are poorly understood. Determining what factors influence changes in trophic position are essential as omnivory plays a central role in theoretical and applied ecology. We used sevenspotted lady beetles (Coccinella septempunctata) to test how prey nutrient content affects beetles’ propensity to engage in herbivory. We show that beetles consuming an all‐prey diet demonstrate normal growth and development, but suffer a complete loss of fitness (spermatogenic failure) that is restored via herbivory and supplementation with phytosterols and cholesterol. Furthermore, we show that lady beetles possess a state‐dependent sterol‐specific appetite and redressed their sterol deficit by feeding on foliage. These results demonstrate that predators balance their nutrient intake via herbivory when prey quality is low, and reveal a selective force (sterol nutrition) that drives predatory taxa to omnivory.  相似文献   
6.
Previously, we have shown that the expression of a 3-hydroxysteroid-oxidase gene in transgenic tobacco initiated a series of biochemical events leading to the conversion of sterol to stanol. As a result, the plants maintained a diminished sterol pool and a modified relative sterol ratio but demonstrated no observable morphological abnormalities. The maintenance of normal higher plant physiology in the absence of particular sterols or in the presence of modified sterol ratios is controversial. In this report, we present additional biochemical and physiological characteristics of transgenic tobacco expressing an Actinomyces 3-hydroxysteroid-oxidase gene. The total steroid accumulated in the transgenic plants is 6-fold higher than in control plants and consists of sterol, 3-ketosteroid and stanol. The relative abundance of sterols within whole plant and individual organs is grossly altered as ethylated side chain sterols account for 99% of the total sterol pool in the transgenic tobacco. Stigmasterol is readily apparent in all tissues and cholesterol is found at measurable levels in specific organs, while campesterol and sitosterol are detected at trace levels in the transgenic plants. Stanols and 3-ketosteroids accumulate in all tissues and represent 77% of the measurable steroid pool in the transgenic plants. The sum of sterol, the respective 3-ketosteroid plus stanol provide a relative abundance of steroid, which is similar to the abundance of sterol accumulated in control tissue. In vitro photosynthetic electron transport measurements demonstrate altered activity of chloroplasts under a variety of reaction conditions, indicating a link between the modified steroid pool and a modulation of chloroplast membrane function.  相似文献   
7.
The aphid Myzus persicae displays high mortality on tobacco plants bearing a transgene which results in the accumulation of the ketosteroids cholestan-3-one and cholest-4-en-3-one in the phloem sap. To test whether the ketosteroids are the basis of the plant resistance to the aphids, M. persicae were reared on chemically-defined diets with different steroid contents at 0.1–10 µg ml−1. Relative to sterol-free diet and dietary supplements of the two ketosteroids and two phytosterols, dietary cholesterol significantly extended aphid lifespan and increased fecundity at one or more dietary concentrations tested. Median lifespan was 50% lower on the diet supplemented with cholest-4-en-3-one than on the cholesterol-supplemented diet. Aphid feeding rate did not vary significantly across the treatments, indicative of no anti-feedant effect of any sterol/steroid. Aphids reared on diets containing equal amounts of cholesterol and cholest-4-en-3-one showed fecundity equivalent to aphids on diets containing only cholesterol. Aphids were reared on diets that reproduced the relative steroid abundance in the phloem sap of the control and modified tobacco plants, and their performance on the two diet formulations was broadly equivalent. We conclude that, at the concentrations tested, plant ketosteroids support weaker aphid performance than cholesterol, but do not cause acute toxicity to the aphids. In plants, the ketosteroids may act synergistically with plant factors absent from artificial diets but are unlikely to be solely responsible for resistance of modified tobacco plants.  相似文献   
8.
Sterols are essential nutrients for insects because, in contrast to mammals, no insect (or arthropod for that matter) can synthesize sterols de novo. Plant-feeding insects typically generate their sterols, commonly cholesterol, by metabolizing phytosterols. However, not all phytosterols are readily converted to cholesterol. In this study we examined, using artificial diets containing single sterols/steroids, how typical (cholesterol and stigmasterol) and atypical (cholestanol and cholestanone) sterols/steroids affect the performance of a generalist caterpillar (Helicoverpa zea). We also performed sterols/steroids analyses, using GC/MS techniques, to explore the metabolic fate of these different dietary sterols/steroids. Finally, we used a microarray approach to measure, and compare, midgut gene expression patterns that arise as a function of dietary sterols/steroids. In general, H. zea performed best on the cholesterol and stigmasterol diets, with cholesterol as the dominant tissue sterol on these two treatments. Compared to the cholesterol and stigmasterol diets, performance was reduced on the cholestanol and cholestanone diets; on these latter treatments stanols were the dominant tissue sterol. Finally, midgut gene expression patterns differed as a function of dietary sterol/steroid; using the cholesterol treatment as a reference, gene expression differences were smallest on stigmasterol, intermediate on cholestanol, and greatest on cholestanone. Inspection of our data revealed two broad insights. First, they identify a number of genes potentially involved in sterol/steroid metabolism and absorption. Second, they provide unique mechanistic insights into how variation in dietary sterol/steroid structure can affect insect herbivores.  相似文献   
9.
Plant produced insect molting hormones, termed phytoecdysteroids (PEs), are thought to function as plant defenses against insects by acting as either feeding deterrents or through developmental disruption. In spinach (Spinacia oleracea), 20-hydroxyecdysone (20E) concentrations in the roots rapidly increase following root damage, root herbivory, or methyl jasmonate (MJ) applications. In this inducible system, we investigated the plant defense hypothesis by examining interactions of roots, 20E concentrations, and larvae of the dark-winged fungus gnat (Bradysia impatiens). Root herbivory by B. impatiens larvae resulted in a 4.0- to 6.6-fold increase in root 20E concentrations. In paired-choice tests, increases in dietary 20E stimulated B. impatiens feeding deterrency. B. impatiens larvae preferred control diets, low in 20E, to those constructed from induced roots and those amended with 20E (25 to 50 micro g/g wet mass). When confined to 20E-treated diets, concentrations as low as 5 micro g/g (wet mass) resulted in significantly reduced B. impatiens survivorship compared to controls. The induction of root 20E levels with MJ resulted in a 2.1-fold increase in 20E levels and a 50% reduction in B. impatiens larval establishment. In a paired-choice arena, untreated control roots were damaged significantly more by B. impatiens larvae than MJ-induced roots that contained 3-fold greater 20E levels. Based on dietary preference tests, the 20E concentrations present in the MJ-induced roots (28 micro g/g wet mass) were sufficient to explain this reduction in herbivory. Interactions between spinach roots and B. impatiens larvae demonstrate that PEs can act as inducible defenses and provide protection against insect herbivory.  相似文献   
10.
The yeast C-8,7 sterol isomerase contains a polyvalent high-affinity drug binding site similar to mammalian sigma receptors. Exogenously supplied sigma ligands inhibit sterol biosynthesis in yeast, demonstrating a pharmacological relationship between sigma ligand-binding and C-8,7 sterol isomerase activity. We report the isolation of an Arabidopsis thaliana C-8,7 sterol isomerase by functional complementation of the corresponding sterol mutant in yeast and its characterization by exposure to sigma ligands. The yeast erg2 mutant, which lacks the C-8,7 sterol isomerase gene and activity, was transformed with an Arabidopsis cDNA yeast expression library. Transformed colonies were selected for restoration of C-8,7 sterol isomerase activity (i.e. wild-type ergosterol production) by enhanced resistance to the antibiotic cycloheximide. Sterols produced in complemented lines were characterized by gas chromatography-mass spectroscopy (GC-MS). The full-length A. thaliana cDNA (pA.t.SI1) that complemented the erg2 mutation contains an open reading frame encoding a 21 kDa protein that shares 68% similarity and 35% amino acid identity to the recently isolated mouse C-8,7 sterol isomerase. The sigma ligands, haloperidol, ifenprodil and verapamil inhibited the production of ergosterol in wild-type Saccharomyces cerevisiae and in the erg2 mutant complemented with pA.t.SI1. Structural and biochemical similarities between the A. thaliana C-8,7 sterol isomerase and the mammalian emopamil-binding protein (EBP) are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号