首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   1篇
  2016年   1篇
  2015年   2篇
  2014年   4篇
  2013年   2篇
  2011年   4篇
  2008年   3篇
  2006年   2篇
  2005年   1篇
  2002年   1篇
  2001年   1篇
排序方式: 共有21条查询结果,搜索用时 15 毫秒
1.
2.
Truncated Notch receptors have transforming activity in vitro and in vivo. However, the role of wild-type Notch signaling in neoplastic transformation remains unclear. Ras signaling is deregulated in a large fraction of human malignancies and is a major target for the development of novel cancer treatments. We show that oncogenic Ras activates Notch signaling and that wild-type Notch-1 is necessary to maintain the neoplastic phenotype in Ras-transformed human cells in vitro and in vivo. Oncogenic Ras increases levels and activity of the intracellular form of wild-type Notch-1, and upregulates Notch ligand Delta-1 and also presenilin-1, a protein involved in Notch processing, through a p38-mediated pathway. These observations place Notch signaling among key downstream effectors of oncogenic Ras and suggest that it might be a novel therapeutic target.  相似文献   
3.
Restriction site-associated DNA sequencing or genotyping-by-sequencing (GBS) approaches allow for rapid and cost-effective discovery and genotyping of thousands of single-nucleotide polymorphisms (SNPs) in multiple individuals. However, rigorous quality control practices are needed to avoid high levels of error and bias with these reduced representation methods. We developed a formal statistical framework for filtering spurious loci, using Mendelian inheritance patterns in nuclear families, that accommodates variable-quality genotype calls and missing data—both rampant issues with GBS data—and for identifying sex-linked SNPs. Simulations predict excellent performance of both the Mendelian filter and the sex-linkage assignment under a variety of conditions. We further evaluate our method by applying it to real GBS data and validating a subset of high-quality SNPs. These results demonstrate that our metric of Mendelian inheritance is a powerful quality filter for GBS loci that is complementary to standard coverage and Hardy–Weinberg filters. The described method, implemented in the software MendelChecker, will improve quality control during SNP discovery in nonmodel as well as model organisms.  相似文献   
4.
Neuraminidase-1 is required for the normal assembly of elastic fibers   总被引:1,自引:0,他引:1  
The assembly of elastic fibers in tissues that undergo repeated cycles of extension and recoil, such as the lungs and blood vessels, is dependent on the proper interaction and alignment of tropoelastin with a microfibrillar scaffold. Here, we describe in vivo histopathological effects of neuraminidase-1 (Neu1) deficiency on elastin assembly in the lungs and aorta of mice. These mice exhibited a tight-skin phenotype very similar to the Tsk mouse. Normal septation of Neu1-null mice did not occur in neonatal mice, resulting in enlarged alveoli that were maintained in adults. The abnormal development of elastic fibers was remarkable under electron microscopy and confirmed by the overlapping distribution of elastin, fibrillin-1, fibrillin-2, and fibulin-5 (Fib-5) by the light microscopy immunostainings. Fib-5 fibers appeared diffuse and unorganized around the alveolar walls and the apex of developing secondary septal crests. Fibrillin-2 deposition was also abnormal in neonatal and adult lungs. Dispersion of myofibroblasts appeared abnormal in developing lungs of Neu1-null mice, with a random distribution of myofibroblast around the alveolar walls, rather than concentrating at sites of elastin synthesis. The elastic lamellae in the aorta of the Neu1-null mice were thinner and separated by hypertrophic smooth muscle cells that were surrounded by an excess of the sialic acid-containing moieties. The concentration of elastin, as measure by desmosine levels, was significantly reduced in the aorta of Neu1-null mice. Message levels for tropoelastin and Fib-5 were normal, suggesting the elastic fiber defects in Neu1-null mice result from impaired extracellular assembly.  相似文献   
5.
17beta-estradiol (17beta-E2) protects against H2O2-mediated depletion of intracellular ATP and lessens the degree of depolarization of mitochondrial membrane potential (DeltaPsi(m)) in cultured lens epithelial cells consequential to oxidative insult. We now report that 17beta-E2 acts as a positive regulator of the survival signal transduction pathway, MAPK which, in turn, acts to stabilize DeltaPsi(m) in effect, attenuating the extent of depolarization of mitochondrial membrane potential in the face of acute oxidative stress. The SV-40 viral transformed human cell line, HLE-B3 was treated with 17beta-E2 over a time course of 60 min and phosphorylation of ERK1/2 was analyzed by Western blot. ERK1/2 was phosphorylated within 5-15 min in the presence of 17beta-E2. Cell cultures were exposed to the MEK1/2 inhibitor, UO126, subsequent to H2O2+/-17beta-E2 treatment and the DeltaPsi(m) examined using JC-1, a potentiometric dye which serves as an indicator for the state of mitochondrial membrane potential. UO126 treatment attenuated ERK1/2 phosphorylation irrespective of whether estradiol was administered. Mitochondrial membrane depolarization resulting from H2O2 stress was substantially greater in the presence of UO126. The greater the extent of depolarization, the less effective 17beta-E2 treatment was in checking mitochondrial membrane depolarization, indicating that the relative degree of ERK phosphorylation influences mitochondrial stability with oxidative insult. The data support a positive correlation between 17beta-E2 stimulation of ERK1/2 phosphorylation and mitochondrial stabilization that would otherwise cause a complete collapse of DeltaPsi(m).  相似文献   
6.
Maintenance of genomic integrity in embryonic cells is pivotal to proper embryogenesis, organogenesis and to the continuity of species. Cultured mouse embryonic stem cells (mESCs), a model for early embryonic cells, differ from cultured somatic cells in their capacity to remodel chromatin, in their repertoire of DNA repair enzymes, and in the regulation of cell cycle checkpoints. Using 129XC3HF1 mESCs heterozygous for Aprt, we characterized loss of Aprt heterozygosity after exposure to ionizing radiation. We report here that the frequency of loss of heterozygosity mutants in mESCs can be induced several hundred-fold by exposure to 5-10Gy of X-rays. This induction is 50-100-fold higher than the induction reported for mouse adult or embryonic fibroblasts. The primary mechanism underlying the elevated loss of heterozygosity after irradiation is mitotic recombination, with lesser contributions from deletions and gene conversions that span Aprt. Aprt point mutations and epigenetic inactivation are very rare in mESCs compared to fibroblasts. Mouse ESCs, therefore, are distinctive in their response to ionizing radiation and studies of differentiated cells may underestimate the mutagenic effects of ionizing radiation on ESC or other stem cells. Our findings are important to understanding the biological effects of ionizing radiation on early development and carcinogenesis.  相似文献   
7.
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号