首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   3篇
  2015年   1篇
  2012年   1篇
  2011年   2篇
  2008年   1篇
  2007年   1篇
  2006年   3篇
  2005年   2篇
  2004年   1篇
  2003年   4篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1999年   4篇
  1998年   2篇
  1992年   1篇
  1989年   1篇
  1984年   1篇
  1973年   1篇
  1971年   1篇
排序方式: 共有31条查询结果,搜索用时 31 毫秒
1.
Epididymal sperm from the painted turtle (Chrysemys picta) possess a cytoplasmic droplet which is located eccentrically on the sperm midpiece. The droplet contains a large quantity of lipid droplets in addition to hollow vesicles and degenerate mitochondrial fragments. Lipid droplets are closely associated with mitochondrial membranes and may function in the formation or degradation of mitochondria. Cytoplasmic droplets become detached from the sperm midpiece in a coordinated manner shortly before the commencement of fall mating and are not observed on sperm recovered from the oviduct of females. © 1992 Wiley-Liss, Inc.  相似文献   
2.
The adaptor protein ARH escorts megalin to and through endosomes   总被引:4,自引:0,他引:4       下载免费PDF全文
Megalin is an endocytic receptor that binds multiple ligands and is essential for many physiological processes such as brain development and uptake of proteins by the kidney tubule, yolk sac, and thyroid. The cytoplasmic tail of megalin contains two FXNPXY motifs. Autosomal recessive hypercholesterolemia (ARH) is an adaptor protein that binds to the FXNPXY motif of the low-density lipoprotein receptor as well as clathrin and AP-2. We found that ARH also binds to the first FXNPXY motif of megalin in two-hybrid, pull-down and coimmunoprecipitation assays. ARH colocalizes with megalin in clathrin coated pits and in recycling endosomes in the Golgi region. When cells are treated with nocodazole, the recycling endosomes containing megalin and ARH disperse. On internalization of megalin, ARH and megalin are first seen in clathrin coated pits followed by sequential localization in early endosomes and tubular recycling endosomes in the pericentriolar region followed by their reappearance at the cell surface. Expression of ARH in Madin-Darby canine kidney cells expressing megalin mini-receptors enhances megalin-mediated uptake of 125I-lactoferrin, a megalin ligand. These results show that ARH facilitates endocytosis of megalin, escorts megalin along its endocytic route and raise the possibility that transport through the endosomal system is selective and requires interaction with specific adaptor proteins.  相似文献   
3.
The cytological changes to germ cells were investigated within the seminiferous epithelium of the American alligator (Alligator mississippiensis). Testicular tissues were collected, embedded in plastic, sectioned on an ultramicrotome, and stained with the periodic acid–Schiff+ procedure followed by a haematoxylin counterstain. Alligators have a prenuptial pattern of germ cell development, where spermatogenesis begins in early spring and sperm is mature by the time mating begins in May. Consistent spatial relationships between germ cells are absent within the seminiferous epithelium of the alligator. Their germ cells progress through the phases of spermatogenesis as a single cohort, leading to one continuous spermiation event that occurs during their mating season (May–June). This temporal germ cell development is different from the consistent spatial development seen within seasonally breeding birds and mammals but is similar to the recently described germ cell development strategies of two other temperate breeding reptiles, the slider turtle and the European wall lizard. The germ cell development strategy shared by these three temperate reptiles representing three different taxa within the class Reptilia is reminiscent of the temporal strategy seen within the anamniotic testis. Thus, alligators and at least two other temperate reptiles exhibit primitive spermatogenic cycles within derived amniotic testes and may be consider intermediates in terms of testicular organization, which may have significance phylogenetically.  相似文献   
4.
Rubella virus E1 glycoprotein normally complexes with E2 in the endoplasmic reticulum (ER) to form a heterodimer that is transported to and retained in the Golgi complex. In a previous study, we showed that in the absence of E2, unassembled E1 subunits accumulate in a tubular pre-Golgi compartment whose morphology and biochemical properties are distinct from both rough ER and Golgi. We hypothesized that this compartment corresponds to hypertrophied ER exit sites that have expanded in response to overexpression of E1. In the present study we constructed BHK cells stably expressing E1 protein containing a cytoplasmically disposed epitope and isolated the pre-Golgi compartment from these cells by cell fractionation and immunoisolation. Double label indirect immunofluorescence in cells and immunoblotting of immunoisolated tubular networks revealed that proteins involved in formation of ER-derived transport vesicles, namely p58/ERGIC 53, Sec23p, and Sec13p, were concentrated in the E1-containing pre-Golgi compartment. Furthermore, budding structures were evident in these membrane profiles, and a highly abundant but unknown 65-kDa protein was also present. By comparison, marker proteins of the rough ER, Golgi, and COPI vesicles were not enriched in these membranes. These results demonstrate that the composition of the tubular networks corresponds to that expected of ER exit sites. Accordingly, we propose the name SEREC (smooth ER exit compartment) for this structure.  相似文献   
5.
6.
Calnuc, a Golgi calcium binding protein, plays a key role in the constitution of calcium storage. Abnormal calcium homeostasis has been linked to Alzheimer's disease (AD). Excessive production and/or accumulation of beta-amyloid (Abeta) peptides that are proteolytically derived from the beta-amyloid precursor protein (APP) have been linked to the pathogenesis of AD. APP has also been indicated to play multiple physiological functions. In this study, we demonstrate that calnuc interacts with APP through direct binding to the carboxyl-terminal region of APP, possibly in a calcium-sensitive manner. Immunofluorescence study revealed that the two proteins co-localize in the Golgi in both cultured cells and mouse brains. Over-expression of calnuc in neuroblastoma cells significantly reduces the level of endogenous APP. Conversely, down-regulation of calnuc by siRNA increases cellular levels of APP. Additionally, we show that over-expression of calnuc down-regulates the APP mRNA level and inhibits APP biosynthesis, which in turn results in a parallel reduction of APP proteolytic metabolites, sAPP, CTFs and Abeta. Furthermore, we found that the level of calnuc was significantly decreased in the brain of AD patients as compared with that of age-matched non-AD controls. Our results suggest a novel function of calnuc in modulating the levels of APP and its proteolytic metabolites, which may further affect the patho/physiological functions of APP including AD pathogenesis.  相似文献   
7.
8.
We have identified CALNUC, an EF-hand, Ca2+-binding protein, as a Golgi resident protein. CALNUC corresponds to a previously identified EF-hand/calcium-binding protein known as nucleobindin. CALNUC interacts with Gαi3 subunits in the yeast two-hybrid system and in GST-CALNUC pull-down assays. Analysis of deletion mutants demonstrated that the EF-hand and intervening acidic regions are the site of CALNUC's interaction with Gαi3. CALNUC is found in both cytosolic and membrane fractions. The membrane pool is tightly associated with the luminal surface of Golgi membranes. CALNUC is widely expressed, as it is detected by immunofluorescence in the Golgi region of all tissues and cell lines examined. By immunoelectron microscopy, CALNUC is localized to cis-Golgi cisternae and the cis-Golgi network (CGN). CALNUC is the major Ca2+-binding protein detected by 45Ca2+-binding assay on Golgi fractions. The properties of CALNUC and its high homology to calreticulin suggest that it may play a key role in calcium homeostasis in the CGN and cis-Golgi cisternae.  相似文献   
9.
The epididymis and efferent duct system of the turtle Chrysemys picta were examined. Seminiferous tubules are drained by a series of ducts that form a rete exterior to the tunica albuginea. The rete is located lateral to the testis and consists of anastamosing tubules of varying diameters, lined by a simple epithelium consisting of squamous to cuboidal cells. The rete is highly vascularized. A series of tubules (efferent ductules) connect the rete to the epididymis proper. The efferent ductules are highly convoluted, running between the epididymal tubules and are of varying diameters. The simple columnar epithelium lining these tubules possesses tight junctions, with every third or fourth cell possessing long cilia that protrude into the lumen. The cytoplasm of these epithelial cells contains abundant mitochondria. In the central portion of the efferent ductule, epithelial cells possess granules that appear to be secreted into the lumen by an apocrine process. The epididymis proper is a single, long, highly convoluted tubule that receives efferent ductules along its entire length. It is lined by a pseudostratified epithelium containing several cell types. The most abundant cell (vesicular cell) lacks cilia, but has a darkly staining apical border due to numerous small vesicles immediately beneath the luminal membrane. The small vesicles appear to fuse with each other basally to form larger vesicles. These cells appear to have an absorptive function, and occasionally sperm are embedded in their cytoplasm. The second-most abundant cell is a basal cell found along the basement membrane. The number of these cells fluctuates throughout the year, being most abundant in late summer and early fall. A small narrow cell with an oval nucleus and darkly staining cytoplasm, extending from the basement membrane to the apical surface, is present in small numbers, particularly in the caudal regions of the epididymis. This cell is frequently found in association with another narrow cell having a rounded nucleus and abundant mitochondria in its cytoplasm.  相似文献   
10.
The rate of aromatization of 4-androstenedione (AD) and 7-hydroxylation of dehydroepiandrosterone (DHEA) by different neuronal cell lines from fetal rat and mouse brain was compared to that of embryonic rat hippocampal cells in primary culture. The (3)H-labeled steroids were incubated with the cells and the metabolites extracted and separated by thin layer chromatography (TLC), as well as analyzed by high-performance liquid chromatography (HPLC) for further identification. All cell types produced estrone (E(1)) and estradiol (E(2)) from [(3)H]AD but the rate of aromatization was lowest with the rat hippocampal cells in primary culture. With [(3)H]DHEA, BHc.2 mouse hippocampal cells and E(t)C.1 neurons behaved like the mixed cells from rat hippocampus, forming 7-hydroxy DHEA as the almost exclusive product. In contrast, mouse brain BV2 microglia were virtually unable to hydroxylate DHEA at C-7 and yielded estrogen and more testosterone (T) than other cell types tested. These experiments highlight the pivotal role of 3beta-hydroxysteroid dehydrogenase/ketoisomerase in the control of AD formation for its subsequent aromatization to estrogen. It raises the possibility that differences in metabolism of DHEA by certain brain cells could account for differences in their immunomodulatory and neuroprotective functions. Some could exert their effects by converting DHEA to its 7-hydroxylated form while others, like BV2 microglia, by converting DHEA primarily to other C-19 steroids and to estrogen by way of AD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号