首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
  2018年   2篇
  2011年   3篇
  2007年   2篇
  2006年   2篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
Parkinson's disease is a common neurodegenerative disorder characterized by α-synuclein (α-Syn)-containing Lewy body formation and selective loss of dopaminergic neurons in the substantia nigra. We have demonstrated the modulating effect of noopept, a novel proline-containing dipeptide drug with nootropic and neuroprotective properties, on α-Syn oligomerization and fibrillation by using thioflavin T fluorescence, far-UV CD, and atomic force microscopy techniques. Noopept does not bind to a sterically specific site in the α-Syn molecule as revealed by heteronuclear two-dimensional NMR analysis, but due to hydrophobic interactions with toxic amyloid oligomers, it prompts their rapid sequestration into larger fibrillar amyloid aggregates. Consequently, this process rescues the cytotoxic effect of amyloid oligomers on neuroblastoma SH-SY5Y cells as demonstrated by using cell viability assays and fluorescent staining of apoptotic and necrotic cells and by assessing the level of intracellular oxidative stress. The mitigating effect of noopept against amyloid oligomeric cytotoxicity may offer additional benefits to the already well-established therapeutic functions of this new pharmaceutical.  相似文献   
2.
3.
Fibril formation of the amyloid-β peptide (Aβ) follows a nucleation-dependent polymerization process and is associated with Alzheimer's disease. Several different lengths of Aβ are observed in vivo, but Aβ1–40 and Aβ1–42 are the dominant forms. The fibril architectures of Aβ1–40 and Aβ1–42 differ and Aβ1–42 assemblies are generally considered more pathogenic. We show here that monomeric Aβ1–42 can be cross-templated and incorporated into the ends of Aβ1–40 fibrils, while incorporation of Aβ1–40 monomers into Aβ1–42 fibrils is very poor. We also show that via cross-templating incorporated Aβ monomers acquire the properties of the parental fibrils. The suppressed ability of Aβ1–40 to incorporate into the ends of Aβ1–42 fibrils and the capacity of Aβ1–42 monomers to adopt the properties of Aβ1–40 fibrils may thus represent two mechanisms reducing the total load of fibrils having the intrinsic, and possibly pathogenic, features of Aβ1–42 fibrils in vivo. We also show that the transfer of fibrillar properties is restricted to fibril-end templating and does not apply to cross-nucleation via the recently described path of surface-catalyzed secondary nucleation, which instead generates similar structures to those acquired via de novo primary nucleation in the absence of catalyzing seeds. Taken together these results uncover an intrinsic barrier that prevents Aβ1–40 from adopting the fibrillar properties of Aβ1–42 and exposes that the transfer of properties between amyloid-β fibrils are determined by their path of formation.  相似文献   
4.
In the current study we investigated the molecular mechanisms of cytotoxicity of amyloid oligomers of horse milk lysozyme. We have shown that lysozyme forms soluble amyloid oligomers and protofibrils during incubation at pH 2.0 and 4.5 and 57 degrees C. These structures bind the amyloid-specific dyes thioflavin T and Congo Red, and their morphology and size were analyzed by atomic force microscopy. Monomeric lysozyme and its fibrils did not affect the viability of three cell types used in our experiments including primary murine neurons and fibroblasts, as well as neuroblastoma cell line IMR-32. However, soluble amyloid oligomers of lysozyme caused death of all these cell types, as estimated by flow-cytometry counting dead cells stained with ethidium bromide. The primary cell cultures appeared to be more sensitive to amyloid than neuroblastoma cell line IMR-32. Amyloid cytotoxicity depends on the size of oligomeric particles: samples containing 20-mers formed at pH 4.5 were more toxic than tetramers and octamers present in the solution at pH 2.0. Soluble amyloid oligomers can self-assemble into doughnut-like structures; however, no correlation was observed between the amount of the doughnut-like structures in the sample and its cytotoxicity. The fact that the intermediate oligomers of such an abundant protein as lysozyme display cytotoxicity confirms a hypothesis that cytotoxicity is a common feature of protein amyloid. Inhibition of intermediate oligomer formation is crucial in preventing amyloid pathogeneses.  相似文献   
5.
The epigenetic impact of DNA methylation in chronic myelogenous leukemia (CML) is not completely understood. To elucidate its role we analyzed 120 patients with CML for methylation of promoter-associated CpG islands of 10 genes. Five genes were identified by DNA methylation screening in the K562 cell line and 3 genes in patients with myeloproliferative neoplasms. The CDKN2B gene was selected for its frequent methylation in myeloid malignancies and ABL1 as the target of BCR-ABL translocation. Thirty patients were imatinib-naïve (mostly treated by interferon-alpha before the imatinib era), 30 were imatinib-responsive, 50 were imatinib-resistant, and 10 were imatinib-intolerant. We quantified DNA methylation by bisulfite pyrosequencing. The average number of methylated genes was 4.5 per patient in the chronic phase, increasing significantly to 6.2 in the accelerated and 6.4 in the blastic phase. Higher numbers of methylated genes were also observed in patients resistant or intolerant to imatinib. These patients also showed almost exclusive methylation of a putative transporter OSCP1. Abnormal methylation of a Src suppressor gene PDLIM4 was associated with shortened survival independently of CML stage and imatinib responsiveness. We conclude that aberrant DNA methylation is associated with CML progression and that DNA methylation could be a marker associated with imatinib resistance. Finally, DNA methylation of PDLIM4 may help identify a subset of CML patients that would benefit from treatment with Src/Abl inhibitors.  相似文献   
6.
Worker and queen bees are genetically indistinguishable. However, queen bees are fertile, larger and have a longer lifespan than their female worker counterparts. Differential feeding of larvae with royal jelly controls this caste switching. There is emerging evidence that the queen-bee phenotype is driven by epigenetic mechanisms. In this study, we show that royal jelly--the secretion produced by the hypopharyngeal and mandibular glands of worker bees--has histone deacetylase inhibitor (HDACi) activity. A fatty acid, (E)-10-hydroxy-2-decenoic acid (10HDA), which accounts for up to 5% of royal jelly, harbours this HDACi activity. Furthermore, 10HDA can reactivate the expression of epigenetically silenced genes in mammalian cells. Thus, the epigenetic regulation of queen-bee development is probably driven, in part, by HDACi activity in royal jelly.  相似文献   
7.
Among the newly discovered amyloid properties, its cytotoxicity plays a key role. Lysozyme is a ubiquitous protein involved in systemic amyloidoses in vivo and forming amyloid under destabilising conditions in vitro. We characterized both oligomers and fibrils of hen lysozyme by atomic force microscopy and demonstrated their dose (5-50 microM) and time-dependent (6-48 h) effect on neuroblastoma SH-SY5Y cell viability. We revealed that fibrils induce a decrease of cell viability after 6 h due to membrane damage shown by inhibition of WST-1 reduction, early lactate dehydrogenase release, and propidium iodide intake; by contrast, oligomers activate caspases after 6 h but cause the cell viability to decline only after 48 h, as shown by fluorescent-labelled annexin V binding to externalized phosphatidylserine, propidium iodide DNA staining, lactate dehydrogenase release, and by typical apoptotic shrinking of cells. We conclude that oligomers induce apoptosis-like cell death, while the fibrils lead to necrosis-like death. As polymorphism is a common property of an amyloid, we demonstrated that it is not a single uniform species but rather a continuum of cross-beta-sheet-containing amyloids that are cytotoxic. An abundance of lysozyme highlights a universal feature of this phenomenon, indicating that amyloid toxicity should be assessed in all clinical applications involving proteinaceous materials.  相似文献   
8.
Prefibrillar cytotoxicity was suggested as a common amyloid characteristic. We showed two types of albebetin prefibrillar oligomers are formed during incubation at pH 7.3. Initial round-shaped oligomers consist of 10-15 molecules determined by atomic force microscopy, do not bind thioflavin-T and do not affect viability of granular neurons and SH-SY5Y cells. They are converted into ca. 30-40-mers possessing cross-beta-sheet and reducing viability of neuronal cells. Neither monomers nor fibrils possess cytotoxicity. We suggest that oligomeric size is important for stabilising cross-beta-sheet core critical for cytotoxicity. As albebetin was used as a carrier-protein for drug delivery, examination of amyloidogenicity is required prior polypeptide biomedical applications.  相似文献   
9.
The pathological Aβ aggregates associated with Alzheimer's disease follow a nucleation-dependent path of formation. A nucleus represents an oligomeric assembly of Aβ peptides that acts as a template for subsequent incorporation of monomers to form a fibrillar structure. Nuclei can form de novo or via surface-catalyzed secondary nucleation, and the combined rates of elongation and nucleation control the overall rate of fibril formation. Transthyretin (TTR) obstructs Aβ fibril formation in favor of alternative non-fibrillar assemblies, but the mechanism behind this activity is not fully understood. This study shows that TTR does not significantly disturb fibril elongation; rather, it effectively interferes with the formation of oligomeric nuclei. We demonstrate that this interference can be modulated by altering the relative contribution of elongation and nucleation, and we show how TTR's effects can range from being essentially ineffective to almost complete inhibition of fibril formation without changing the concentration of TTR or monomeric Aβ.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号