首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   1篇
  8篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1994年   1篇
  1990年   2篇
排序方式: 共有8条查询结果,搜索用时 0 毫秒
1
1.
Summary Tarantula heart cDNA libraries were screened with synthetic oligonucleotide probes deduced from the highly conserved amino acid sequences of the two copper-binding sites, copper A and copper B, found in chelicerate hemocyanins. Positive cDNA clones could be obtained and four different cDNA types were characterized.  相似文献   
2.
3.
The complete nucleotide sequence of the 14,771-bp-long mitochondrial (mt) DNA of a urochordate (Chordata)-the ascidian Halocynthia roretzi-was determined. All the Halocynthia mt-genes were found to be located on a single strand, which is rich in T and G rather than in A and C. Like nematode and Mytilus edulis mtDNAs, that of Halocynthia encodes no ATP synthetase subunit 8 gene. However, it does encode an additional tRNA gene for glycine (anticodon TCT) that enables Halocynthia mitochondria to use AGA and AGG codons for glycine. The mtDNA carries an unusual tRNA(Met) gene with a TAT anticodon instead of the usual tRNA(Met)(CAT) gene. As in other metazoan mtDNAs, there is not any long noncoding region. The gene order of Halocynthia mtDNA is completely different from that of vertebrate mtDNAs except for tRNA(His)-tRNA(Ser)(GCU), suggesting that evolutionary change in the mt-gene structure is much accelerated in the urochordate line compared with that in vertebrates. The amino acid sequences of Halocynthia mt-proteins deduced from their gene sequences are quite different from those in other metazoans, indicating that the substitution rate in Halocynthia mt-protein genes is also accelerated.  相似文献   
4.
5.
Xenarthra (Edentata) is an extremely diverse mammalian order whose modern representatives are the armadillos, anteaters, and sloths. The phylogeny of these groups is poorly resolved. This is particularly true for the sloths (phyllophagans), originally a large and diverse group now reduced to two genera in two different families. Both morphological analyses and molecular analyses of rDNA genes of living and extinct sloths have been used with limited success to elucidate their phylogeny. In an attempt to clarify relationships among the sloths, DNA was extracted and mitochondrial cytochrome b gene sequences were determined from representatives of two extinct groups of sloths (Mylodontidae and Megatheriidae), their two living relatives (two-toed sloths [Megalonychidae], three-toed sloths [Bradypodidae]), anteaters and armadillos. A consistent feature of the latter two species was the nuclear copies of cytochrome b gene sequences. Several methods of phylogenetic reconstruction were applied to the sequences determined, and the results were compared with 12S rDNA sequences obtained in previous studies. The cytochrome b gene exhibited a phylogenetic resolving power similar to that of the 12S rDNA sequences. When both data sets were combined, they tended to support the grouping of two-toed sloths with mylodontids and three-toed sloths with megatheriids. The results strengthen the view that the two families of living sloths adapted independently to an arboreal life-style.  相似文献   
6.
Hemocyanins are large oligomeric respiratory proteins found in many arthropods and molluscs. The hemocyanin of the tarantula Eurypelma californicum is a 24-mer protein complex with molecular mass of 1, 726,459 Da that consists of seven different polypeptides (a-g), each occupying a distinct position within the native molecule. Here we report the complete molecular structure of the E. californicum hemocyanin as deduced from the corresponding cDNAs. This represents the first complex arthropod hemocyanin to be completely sequenced. The different subunits display 52-66% amino acid sequence identity. Within the subunits, the central domain, which bears the active center with the copper-binding sites A and B, displays the highest degree of identity. Using a homology modeling approach, the putative three-dimensional structure of individual subunits was deduced and compared. Phylogenetic analyses suggest that differentiation of the individual subunits occurred 400-550 million years ago. The hemocyanin of the stemline Chelicerata was probably a hexamer built up of six distinct subunit types a, b/c, d, e, f, and g, whereas that of the early Arachnida was originally a 24-mer that emerged after the differentiation of subunits b and c.  相似文献   
7.
8.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号