首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5985篇
  免费   398篇
  国内免费   3篇
  2021年   60篇
  2020年   34篇
  2019年   46篇
  2018年   69篇
  2017年   56篇
  2016年   104篇
  2015年   174篇
  2014年   245篇
  2013年   299篇
  2012年   335篇
  2011年   339篇
  2010年   223篇
  2009年   236篇
  2008年   325篇
  2007年   342篇
  2006年   317篇
  2005年   272篇
  2004年   268篇
  2003年   254篇
  2002年   254篇
  2001年   88篇
  2000年   82篇
  1999年   96篇
  1998年   90篇
  1997年   66篇
  1996年   52篇
  1995年   62篇
  1994年   57篇
  1993年   67篇
  1992年   85篇
  1991年   81篇
  1990年   61篇
  1989年   67篇
  1988年   66篇
  1987年   37篇
  1986年   58篇
  1985年   70篇
  1984年   50篇
  1983年   51篇
  1982年   55篇
  1981年   44篇
  1980年   40篇
  1979年   36篇
  1978年   50篇
  1976年   41篇
  1975年   33篇
  1974年   32篇
  1973年   37篇
  1972年   30篇
  1971年   36篇
排序方式: 共有6386条查询结果,搜索用时 15 毫秒
1.
The review focuses on the multiple separating regimes that offers the free flow electrophoresis technique: free flow zone electrophoresis, isoelectric focusing, isotachophoresis, free flow step electrophoresis. Also, the feasibility to apply either interval or continuous flow electrophoresis is evaluated. The free flow zone electrophoresis regime is generally selected for the separation of cells, organelles and membranes while the other regimes find their largest fields of applications in the purification of proteins and peptides. The latter regimes present the highest resolution efficiency. Therefore, a large part of this review is devoted to the applicabilities of these different regimes to the purification of organelles and membrane vesicles at the preparative scale. Recent developments, both in instrumentation and procedures, are described. The major achievements in plant membrane fractionation obtained with free flow electrophoresis are outlined. The related procedures are both analytical and preparative: they separate tonoplast and plasma membrane simultaneously from the same homogenate, they discriminate for one type of membrane vesicles of opposite orientation, and process large quantities of membrane material by reason of the continuous flow mode. Recent advances using electromigration techniques that permit confirmation of the dynamic state of membranes, characterisation of complex membrane-dependent functions and discovery of new membrane-localised activities are presented.  相似文献   
2.
3.
4.
Intestinal cholesterol absorption is specifically inhibited by the 2-azetidinone cholesterol absorption inhibitor ezetimibe. Photoreactive ezetimibe analogues specifically label a 145-kDa protein in the brush border membrane of enterocytes from rabbit small intestine identified as aminopeptidase N (CD13). In zebrafish and mouse small intestinal cytosol, a heterocomplex of Mr 52 kDa between annexin II and caveolin 1 was suggested as a target of ezetimibe. In contrast, in the cytosol and brush border membrane vesicles (BBMV) from rabbit small intestine of control animals or rabbits treated with the nonabsorbable cholesterol absorption inhibitor AVE 5530, both annexin II and caveolin 1 were exclusively present as monomers without any heterocomplex formation. Upon immunoprecipitation with annexin II a 52-kDa band was observed after immunostaining with annexin II antibodies, whereas no staining of a 52-kDa band occurred with anti-caveolin 1 antibodies. Vice versa, a 52-kDa band obtained by immunoprecipitation with caveolin 1 antibodies did not stain with annexin II-antibodies. The intensity of the 52-kDa band was dependent on the amount of antibody and was also observed with anti-actin or anti-APN antibodies suggesting that the 52-kDa band is a biochemical artefact. After incubation of cytosol or BBMV with radioactively labelled ezetimibe analogues, no significant amounts of the ezetimibe analogues could be detected in the immunoprecipitate with caveolin-1 or annexin II antibodies. Photoaffinity labelling of rabbit small intestinal BBMV with ezetimibe analogues did not result in labelling of proteins being immunoreactive with annexin II, caveolin 1 or a 52-kDa heterocomplex. These findings indicate that the rabbit small intestine does not contain an annexin II/caveolin 1 heterocomplex as a target for ezetimibe.  相似文献   
5.
Realistic power calculations for large cohort studies and nested case control studies are essential for successfully answering important and complex research questions in epidemiology and clinical medicine. For this, we provide a methodical framework for general realistic power calculations via simulations that we put into practice by means of an R‐based template. We consider staggered recruitment and individual hazard rates, competing risks, interaction effects, and the misclassification of covariates. The study cohort is assembled with respect to given age‐, gender‐, and community distributions. Nested case‐control analyses with a varying number of controls enable comparisons of power with a full cohort analysis. Time‐to‐event generation under competing risks, including delayed study‐entry times, is realized on the basis of a six‐state Markov model. Incidence rates, prevalence of risk factors and prefixed hazard ratios allow for the assignment of age‐dependent transition rates given in the form of Cox models. These provide the basis for a central simulation‐algorithm, which is used for the generation of sample paths of the underlying time‐inhomogeneous Markov processes. With the inclusion of frailty terms into the Cox models the Markov property is specifically biased. An “individual Markov process given frailty” creates some unobserved heterogeneity between individuals. Different left‐truncation‐ and right‐censoring patterns call for the use of Cox models for data analysis. p‐values are recorded over repeated simulation runs to allow for the desired power calculations. For illustration, we consider scenarios with a “testing” character as well as realistic scenarios. This enables the validation of a correct implementation of theoretical concepts and concrete sample size recommendations against an actual epidemiological background, here given with possible substudy designs within the German National Cohort.  相似文献   
6.
7.
The 72- and 92-kDa type IV collagenases are members of a group of secreted zinc metalloproteases. Two members of this family, collagenase and stromelysin, have previously been localized to the long arm of chromosome 11. Here we assign both of the two type IV collagenase genes to human chromosome 16. By sequencing, the 72-kDa gene is shown to consist of 13 exons, 3 more than have been reported for the other members of this gene family. The extra exons encode the amino acids of the fibronectin-like domain which has so far been found in only the 72- and 92-kDa type IV collagenase. The evolutionary relationship among the members of this gene family is discussed.  相似文献   
8.
The alpha-Gal trisaccharide Gal(alpha)(1-->3)Galbeta(1-->4)GlcNAc 11 was synthesized on a homogeneously soluble polymeric support (polyethylene glycol, PEG) by use of a multi-enzyme system consisting of beta-1,4-galactosyltransferase (EC 2.4.1.38), alpha-1,3-galactosyltransferase (EC 2.4.1.151), sucrose synthase (EC 2.4.1.13) and UDP-glucose-4-epimerase (EC 5.1.3.2). In addition workup was simplified by use of dia-ultrafiltration. Thus the advantages of classic chemistry/enzymology and solid-phase synthesis could be united in one. Subsequent hydrogenolytic cleavage afforded the free alpha-Gal trisaccharide.  相似文献   
9.
Abstract. The Hexactinellida sponge Aphrocallistes vastus contains a soluble aggregation factor (AF) whose purification has been described in this communication. It is characterized by a S°20.w value of 37 and a buoyant density of 1.45 g/cm3. The AF is a glycoporteinaceous particle composed of three major protein species; no core structure could be visualized. In the presence of Ca2+, the AF causes secondary aggregation of single cells. The aggregation process is temperature, pH, and ionic strength independent within a broad range. Evidence is presented indicating that two (or more) AF molecules are required for the establishment of a stable cell: cell interaction. In contrast to the AFs from demosponges, the hexactinellid AF functions species-unspecifically.  相似文献   
10.
The nocturnally active weakly electric fish Gnathonemus petersii is known to employ active electrolocation for the detection of objects and for orientation in its environment. The fish emits pulse‐type electric signals with an electric organ and perceives these signals with more than 3,000 epidermal electroreceptor organs, the mormyromasts, which are distributed over the animal's skin surface. In this study, we measured the metric dimensions of the mormyromasts from different body regions to find structural and functional specialization of the various body parts. We focused on the two foveal regions of G. petersii, which are located at the elongated and movable chin (the Schnauzenorgan; SO) and at the nasal region (NR), the skin region between the mouth and the nares. These two foveal regions were compared to the dorsal part (back) of the fish, which contains typical nonfoveal mormyromasts. While the gross anatomy of the mormyromasts from all skin regions is similar, the metric dimensions of the main substructures differed. The mormyromasts at the SO are the smallest and contain the smallest receptor cells. In addition, the number of receptor cells per organ is lowest at the SO. In contrast, at the back the biggest receptor organs with the highest amount of receptor cells per organ occur. The mormyromasts at the NR are in several respects intermediate between those from the back and the SO. However, mormyromasts at the NR are longer than those at all other skin regions, the canal leading from the receptor pore to the inner chambers were the longest and the overlaying epidermal layers are the thickest. These results show that mormyromasts and the epidermis they are embedded in at both foveal regions differ specifically from those found on the rest of the body. The morphological specializations lead to functional specialization of the two foveae. J. Morphol., 2012. © 2012 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号