首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   673篇
  免费   57篇
  2022年   11篇
  2021年   15篇
  2020年   15篇
  2019年   17篇
  2018年   21篇
  2017年   8篇
  2016年   25篇
  2015年   37篇
  2014年   19篇
  2013年   48篇
  2012年   48篇
  2011年   41篇
  2010年   23篇
  2009年   25篇
  2008年   26篇
  2007年   24篇
  2006年   24篇
  2005年   26篇
  2004年   19篇
  2003年   19篇
  2002年   22篇
  2001年   8篇
  2000年   12篇
  1999年   9篇
  1998年   4篇
  1992年   6篇
  1991年   4篇
  1990年   9篇
  1989年   5篇
  1988年   5篇
  1987年   5篇
  1986年   10篇
  1985年   8篇
  1984年   10篇
  1983年   10篇
  1981年   4篇
  1980年   11篇
  1979年   8篇
  1978年   6篇
  1977年   6篇
  1976年   5篇
  1975年   8篇
  1974年   6篇
  1973年   5篇
  1972年   5篇
  1971年   8篇
  1970年   7篇
  1969年   4篇
  1968年   6篇
  1966年   4篇
排序方式: 共有730条查询结果,搜索用时 31 毫秒
1.
2.
Purification and properties of the components from tropinin   总被引:16,自引:0,他引:16  
  相似文献   
3.
pH-dependent structural transition in rabbit skeletal troponin C   总被引:1,自引:0,他引:1  
Although the crystal structure of troponin C is known (Herzberg, O., and James, M. N. G. (1985) Nature 313, 653-659; Sundaralingam, M., Bergstrom, R., Strasburg, G., Rao, S. T., Roychowdhury, P., Greaser, M., and Wang, B. C. (1985) Science 227, 945-948), its structure in solution, particularly under physiological conditions, has not been established. We examined the conformation of troponin C under a variety of conditions by measuring the distance between sites located in the N- and C-terminal domains using the technique of resonance energy transfer. The donor was the luminescent lanthanide ion Tb3+ bound at the low affinity metal sites in the N-terminal domain. The acceptor was 4-dimethylaminophenylazophenyl-4'-maleimide attached at Cys-98 in the C-terminal domain. The distance between these sites was found to be greater than 5.2 nm at pH 5.0, 2.7 nm at pH 6.8 for uncomplexed troponin C, and 4.1 nm for troponin C complexed with troponin I at pH 6.8. These findings suggest that uncomplexed troponin C undergoes a pH-dependent transition from an elongated conformation, compatible with the crystal structure at acidic pH, to a more compact conformation at neutral pH. When complexed with troponin I, troponin C adopts a conformation of intermediate length compared to the uncomplexed molecule at pH 6.8 and 5.0.  相似文献   
4.
J Gergely  G Sarmay 《FASEB journal》1990,4(15):3275-3283
Fc receptors (FcR) are immunoglobulin-binding molecules that enable antibodies to perform several biological functions by forming a link between specific antigen recognition and effector cells. FcRs are involved in regulating antibody production as well. Most FcRs belong to the immunoglobulin superfamily, and show structural homology with each other and with their ligands. Recent data on the structure of IgG binding FcRs obtained from monoclonal antibodies and gene cloning studies, as well as on ligand binding capacity and fine specificity of the receptor binding site (or sites), are reviewed. The binding capacity and fine specificity of receptor binding sites, as well as the structure and conformation of the immunoglobulin ligands, play important roles in triggering FcR-mediated signals. In induction of signals, the interaction of the FcR with the CH2 domain of the IgGFc is decisive. The high-affinity Fc gamma RI possess one active binding site specific for contact residues that is located at the N-proximal end of the CH2 domain and is able to mediate both binding and signal transfer. The low-affinity Fc gamma RIII has two active binding sites: the CH3 domain-specific site, which mediates only binding; and the CH2 domain-specific site, which is responsible for binding and signaling. Similarly, the low-affinity Fc gamma RII on resting B cells has one site for CH2 and another for CH3 binding. The expression, release, and fine specificity of Fc gamma RII on B cells correlates with the cell cycle.  相似文献   
5.
We have studied the phosphorylation of progesterone receptors (PR) in T47Dco human breast cancer cells using a monoclonal antibody directed against human PR called AB-52. This antibody recognizes both the A- (Mr approximately 94,000) and B- (Mr approximately 120,000) hormone binding proteins of PR, and was used to immunoprecipitate phosphorylated receptors isolated from cells incubated in vivo with [32P]orthophosphate. The specific activity, or phosphorylation levels, relative to protein levels was quantified by combined immunoblotting and autoradiography followed by densitometry. We find that immunopurified untransformed hormone-free receptors, which have a characteristic triplet B, singlet A structure, are phosphoproteins with similar levels of phosphate incorporation in all protein bands. If PR are first transformed to the nuclear binding form by treatment of cells with progesterone, and then labeled with [32P]orthophosphate, the receptor proteins are additionally phosphorylated. These chromatin-bound hormone occupied receptors incorporate five to 10 times more labeled phosphate per total receptor protein than do PR from untreated cells during the same [32P]incubation time. The second round of phosphorylation may also account for mobility shifts of transformed A- and B-receptors observed in sodium dodecyl sulfate-polyacrylamide gels. Both untransformed and transformed species of A- and B-receptors are phosphorylated only on serine residues, and neither the extent of phosphorylation, nor the phosphoamino acids, are affected by treatment of the cells with epidermal growth factor or insulin. We previously reported that after hormone binding and transformation of receptors to the tight chromatin binding state, PR undergo processing, or nuclear down-regulation. AB-52 was used to compare PR protein and phosphorylation levels when cells were treated for 0.5-48 h with progesterone or the synthetic progestin R5020. Both agonists lead to hyperphosphorylation of nuclear PR before phosphorylation levels decrease, in parallel with the drop in protein levels as receptors down-regulate. Treatment of cells with RU 486, an antiprogestin, leads to PR transformation as determined by immunoblotting, but subsequent down-regulation does not occur. After transformation, chromatin-bound RU 486-occupied receptors become intensely phosphorylated however, with specific activities 15 times greater than those of untransformed PR. Since these receptors are phosphorylated but not processed, the hormone-induced nuclear phosphorylation of PR is unlikely to be a signal for receptor processing.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   
6.
We have reported previously that insulin causes a complete but reversible desensitization to insulin action in rat hepatoma HTC cells in tissue culture, and that this insulin resistance is mediated by postbinding mechanisms rather than receptor down-regulation (Heaton, J. H., and Gelehrter, T. D. (1981) J. Biol. Chem. 256, 12257-12262). We report here that insulin causes a similar desensitization to the induction of tyrosine aminotransferase by the insulin-like growth factors IGF-I and IGF-II isolated from human plasma, and by multiplication-stimulating activity, the rat homologue of IGF-II. The results of both competition-binding studies and affinity cross-linking experiments indicate that insulin-like growth factors (IGFs) bind primarily to IGF receptors rather than to insulin receptors. The low concentrations at which these factors induce transaminase is consistent with their acting primarily via IGF receptors. This is confirmed by experiments utilizing anti-insulin receptor antibody which both inhibits 125I-insulin binding and shifts the concentration dependence of insulin induction of tyrosine aminotransferase to the right. This same immunoglobulin does not inhibit 125I-multiplication-stimulating activity binding and only minimally inhibits 125I-IGF-I binding. Anti-insulin receptor antibody also does not significantly shift the concentration dependence for the IGFs, suggesting that IGFs induce transaminase by acting via IGF receptors. Although insulin down regulates insulin receptors, it does not decrease IGF-I or IGF-II binding. We conclude that insulin causes desensitization of HTC cells to IGFs by affecting a postbinding step in IGF action, which may be common to the actions of both insulin and insulin-like growth factors.  相似文献   
7.
8.
9.
Insoluble glycogen is an enzymatically modified form of naturally occurring soluble glycogen with a great adsorbing capacity. It can be metabolized by phagocytes to glucose. In this study we used insoluble glycogen intravenously in the experimental endotoxin shock of rats. Wistar male rats were sensitized to endotoxin by Pb acetate. The survival of rats were compared in groups of animals endotoxin shock treated and non-treated with insoluble glycogen. Furthermore, we have determined in vitro the binding capacity of insoluble glycogen for endotoxin, tumour necrosis factor alpha, interleukin-1 and secretable phospholipase A2. Use of 10 mg/kg dose of insoluble glycogen could completely prevent the lethality of shock induced by LD50 quantity of endotoxin in rats. All animals treated survived. Insoluble glycogen is a form of 'metabolizable internal adsorbents'. It can potentially be used for treatment of septic shock.  相似文献   
10.
We have employed 1H-nuclear magnetic resonance spectroscopy to study the interaction of the drug trifluoperazine with calmodulin and troponin-C. Distinct trifluoperazine-binding sites exist in the N- and C-terminal halves of both proteins. Each site consists of a group of hydrophobic side-chains brought into proximity by the Ca2+-dependent juxtaposition of two alpha-helical segments of the protein, each, in turn, belonging to a different Ca2+-binding site in the protein half. The trifluoperazine-induced inhibition of the biological activating ability of calmodulin appears to result from conformational restrictions conferred upon the protein by the bound drug.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号