首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  2014年   1篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2003年   1篇
  1998年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
The Horizontal Gene Transfer DataBase (HGT-DB) is a genomic database that includes statistical parameters such as G+C content, codon and amino-acid usage, as well as information about which genes deviate in these parameters for prokaryotic complete genomes. Under the hypothesis that genes from distantly related species have different nucleotide compositions, these deviated genes may have been acquired by horizontal gene transfer. The current version of the database contains 88 bacterial and archaeal complete genomes, including multiple chromosomes and strains. For each genome, the database provides statistical parameters for all the genes, as well as averages and standard deviations of G+C content, codon usage, relative synonymous codon usage and amino-acid content. It also provides information about correspondence analyses of the codon usage, plus lists of extraneous group of genes in terms of G+C content and lists of putatively acquired genes. With this information, researchers can explore the G+C content and codon usage of a gene when they find incongruities in sequence-based phylogenetic trees. A search engine that allows searches for gene names or keywords for a specific organism is also available. HGT-DB is freely accessible at http://www.fut.es/~debb/HGT.  相似文献   
2.
Using information from several metabolic databases, we have built our own metabolic database containing 434 pathways and 1157 different enzymes. We have used this information to construct a dendrogram that demonstrates the metabolic similarities between 282 species. The resulting species distribution and the clusters defined in the tree show a certain taxonomic congruence, especially in recent relationships between species. This dendrogram is another representation of the tree of life, based on metabolism that may complement the trees constructed by other methods. For example, the metabolic dissimilarity we demonstrate between Symbiobacterium thermophilum (previously defined as Actinobacteria) and the other Actinobacteria species, and the metabolic similarity between S. thermophilum and Clostridia, combined with other evidence, suggest that S. thermophilum may be re-classified as Firmicutes, Clostridia.  相似文献   
3.

 

A recent systematic survey suggested that the YRG (or YawG/YlqF) family with the G4-G5-G1-G2-G3 order of the conserved GTPase motifs represents the only possible circularly permuted variation of the canonical GTPase structure. Here we show that a different circularly permuted GTPase domain actually does exist, conforming to the pattern G3-G4-G5-G1-G2. The domain, dubbed cpRAS, is a variant of RAS family GTPases and occurs in two types of larger proteins, either inserted into a region homologous to a bacterial group of proteins classified as COG2373 and potentially related to the alpha-2-macroglobulin family (so far a single protein in Dictyostelium) or in combination with a von Willebrand factor type A (VWA) domain. For the latter protein type, which was found in a few metazoans and several distantly related protists, existence in the common ancestor of opisthokonts, Amoebozoa and excavates followed by at least eight independent losses may be inferred. Our findings thus bring further evidence for the importance of parallel reduction of ancestral complexity in the eukaryotic evolution.

Reviewers

This article was reviewed by Lakshminarayan Iyer and Fyodor Kondrashov. For the full reviews, please go to the Reviewers' comments section.  相似文献   
4.

Background  

Amino acids in proteins are not used equally. Some of the differences in the amino acid composition of proteins are between species (mainly due to nucleotide composition and lifestyle) and some are between proteins from the same species (related to protein function, expression or subcellular localization, for example). As several factors contribute to the different amino acid usage in proteins, it is difficult both to analyze these differences and to separate the contributions made by each factor.  相似文献   
5.

Background

Palmitate, a saturated fatty acid (FA), is known to induce toxicity and cell death in various types of cells. Resveratrol (RSV) is able to prevent pathogenesis and/or decelerate the progression of a variety of diseases. Several in vitro and in vivo studies have also shown a protective effect of RSV on fat accumulation induced by FAs. Additionally, endoplasmic reticulum (ER) stress has recently been linked to cellular adipogenic responses. To address the hypothesis that the RSV effect on excessive fat accumulation promoted by elevated saturated FAs could be partially mediated by a reduction of ER stress, we studied the RSV action on experimentally induced ER stress using palmitate in several cancer cell lines.

Principal Findings

We show that, unexpectedly, RSV promotes an amplification of palmitate toxicity and cell death and that this mechanism is likely due to a perturbation of palmitate accumulation in the triglyceride form and to a less important membrane fluidity variation. Additionally, RSV decreases radical oxygen species (ROS) generation in palmitate-treated cells but leads to enhanced X-box binding protein-1 (XBP1) splicing and C/EBP homologous protein (CHOP) expression. These molecular effects are induced simultaneously to caspase-3 cleavage, suggesting that RSV promotes palmitate lipoapoptosis primarily through an ER stress-dependent mechanism. Moreover, the lipotoxicity reversion induced by eicosapentaenoic acid (EPA) or by a liver X receptor (LXR) agonist reinforces the hypothesis that RSV-mediated inhibition of palmitate channeling into triglyceride pools could be a key factor in the aggravation of palmitate-induced cytotoxicity.

Conclusions

Our results suggest that RSV exerts its cytotoxic role in cancer cells exposed to a saturated FA context primarily by triglyceride accumulation inhibition, probably leading to an intracellular palmitate accumulation that triggers a lipid-mediated cell death. Additionally, this cell death is promoted by ER stress through a CHOP-mediated apoptotic process and may represent a potential anticancer strategy.  相似文献   
6.
We studied the evolution of thermophily in prokaryotes using the phylogenetic relationships between 279 bacteria and archaea and their thermophilic amino acid composition signature. Our findings suggest several examples in which the capacity of thermophilic adaptation has been gained or lost over relatively short evolutionary periods throughout the evolution of prokaryotes.  相似文献   
7.
We studied a human protein paralog cluster formed by 38 nonredundant sequences taken from the Swiss-Prot database and its supplement, TrEMBL. These sequences include nuclear receptors, nuclear-receptor factors and nuclear-receptor-like orphans. Working separately with both the central cysteine-rich DNA-binding domain and the carboxy-terminal ligand-binding domain, we performed multialignment analyses that included drawings of paralog trees. Our results show that the cluster is highly multibranched, with considerable differences in the amino acid sequence in the ligand-binding domain (LBD), and 17 proximal subbranches which are identifiable and fully coincident when independent trees from both domains are compared. We identified the six recently proposed subfamilies as groups of neighboring clusters in the LBD paralog tree. We found similarities of 80%-100% for the N-terminal transactivation domain among mammalian ortholog receptors, as well as some paralog resemblances within diverse subbranches. Our studies suggest that during the evolutionary process, the three domains were assembled in a modular fashion with a nonshuffled modular fusion of the LBD. We used the EMBL server PredictProtein to make secondary-structure predictions for all 38 LBD subsequences. Amino acid residues in the multialigned homologous domains--taking the beginning of helix H3 of the human retinoic acid receptor-gamma as the initial point of reference--were substituted with H or E, which identify residues predicted to be helical or extended, respectively. The result was a secondary structure multialignment with the surprising feature that the prediction follows a canonical pattern of alignable alpha-helices with some short extended elements in between, despite the fact that a number of subsequences resemble each other by less than 25% in terms of the similarity index. We also identified the presence of a binary patterning in all of the predicted helices that were conserved throughout the 38-sequence sample. Our results fit well with a recently proposed evolutionary model that combines protein secondary structure and amino acid replacement. We propose a new hypothesis for molecular evolution, in which chaperones--acting as an endogenous cellular device for selection--play a crucial role in preserving protein secondary structure.   相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号