首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   139篇
  免费   6篇
  2022年   2篇
  2021年   3篇
  2020年   1篇
  2019年   2篇
  2017年   2篇
  2016年   4篇
  2015年   6篇
  2014年   7篇
  2013年   6篇
  2012年   14篇
  2011年   9篇
  2010年   8篇
  2009年   11篇
  2008年   8篇
  2007年   6篇
  2006年   7篇
  2005年   12篇
  2004年   6篇
  2003年   6篇
  2002年   6篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1998年   3篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1993年   2篇
  1992年   3篇
  1990年   1篇
排序方式: 共有145条查询结果,搜索用时 31 毫秒
1.
2.
Abstract: We analyzed biochemically and temporally the molecular events that occur in the programmed cell death of mouse cerebellar granule neurons deprived of high potassium levels. An hour after switching the neurons to a low extracellular K+ concentration ([K+]o), a significant part of the genomic DNA was already cleaved to high-molecular-weight fragments. This phenomenon was intensified with the progression of the death process. Addition of cycloheximide to the neurons 4 h after high [K+]o deprivation resulted in no cell loss and complete recovery of the damaged DNA. DNA margination and nuclear fragmentation as assessed by 4,6-diaminodiphenyl-2-phenylindole staining were observable in a few cells beginning ~4 h after the removal of high [K+]o and developed to nuclear condensation 4 h later. Six hours after high [K+]o deprivation, the DNA was fragmented into oligonucleosome-sized fragments. Within 6 h after removal of the extracellular K+, 50% of the neurons were committed to die and lost their ability to be rescued by readministration of 25 mM [K+]o. Similar to high [K+]o deprivation, inhibition of RNA or protein synthesis failed to halt neuronal degeneration of a similar percentage of cells 6 h after the onset of the death process. Mitochondrial function steadily decreased after [K+]o removal. An ~40% decrease in RNA and protein synthesis was detected by 6 h of [K+]o removal during the period of cell death commitment; rates continued to decline gradually thereafter. The temporal characteristics of the DNA damage and recovery, DNA cleavage to oligonucleosome-sized fragments, and the reduction in mitochondrial activity—events that occurred within the critical time—may indicate that these processes have an important part in the mechanism that committed the neurons to die.  相似文献   
3.
4.
A subset of the proteins found in pathological protein fibrils also exhibit tendencies for liquid-liquid phase separation (LLPS) both in vitro and in cells. The mechanisms underlying the connection between these phase transitions have been challenging to study due to the heterogeneous and dynamic nature of the states formed during the maturation of LLPS protein droplets into gels and solid aggregates. Here, we interrogate the liquid-to-solid transition of the low-complexity domain of the RNA-binding protein FUS (FUS LC), which has been shown to adopt LLPS, gel-like, and amyloid states. We employ magic-angle-spinning NMR spectroscopy, which has allowed us to follow these transitions in real time and with residue-specific resolution. We observe the development of β-sheet structure through the maturation process and show that the final state of FUS LC fibrils produced after LLPS is distinct from that grown from fibrillar seeds. We also apply our methodology to FUS LC G156E, a clinically relevant FUS mutant that exhibits accelerated fibrillization rates. We observe significant changes in dynamics during the transformation of the FUS LC G156E construct and begin to unravel the sequence specific contributions to this phenomenon with computational studies of the phase-separated state of FUS LC and FUS LC G156E.  相似文献   
5.

Background

9 million people are infected with Trypanosoma cruzi in Latin America, plus more than 300,000 in the United States, Canada, Europe, Australia, and Japan. Approximately 30% of infected individuals develop circulatory or digestive pathology. While in underdeveloped countries transmission is mainly through hematophagous arthropods, transplacental infection prevails in developed ones.

Methodology/Principal Findings

During infection, T. cruzi calreticulin (TcCRT) translocates from the endoplasmic reticulum to the area of flagellum emergence. There, TcCRT acts as virulence factor since it binds maternal classical complement component C1q that recognizes human calreticulin (HuCRT) in placenta, with increased parasite infectivity. As measured ex vivo by quantitative PCR in human placenta chorionic villi explants (HPCVE) (the closest available correlate of human congenital T. cruzi infection), C1q mediated up to a 3–5-fold increase in parasite load. Because anti-TcCRT and anti-HuCRT F(ab′)2 antibody fragments are devoid of their Fc-dependent capacity to recruit C1q, they reverted the C1q-mediated increase in parasite load by respectively preventing its interaction with cell-bound CRTs from both parasite and HPCVE origins. The use of competing fluid-phase recombinant HuCRT and F(ab′)2 antibody fragments anti-TcCRT corroborated this. These results are consistent with a high expression of fetal CRT on placental free chorionic villi. Increased C1q-mediated infection is paralleled by placental tissue damage, as evidenced by histopathology, a damage that is ameliorated by anti-TcCRT F(ab′)2 antibody fragments or fluid-phase HuCRT.

Conclusions/Significance

T. cruzi infection of HPCVE is importantly mediated by human and parasite CRTs and C1q. Most likely, C1q bridges CRT on the parasite surface with its receptor orthologue on human placental cells, thus facilitating the first encounter between the parasite and the fetal derived placental tissue. The results presented here have several potential translational medicine aspects, specifically related with the capacity of antibody fragments to inhibit the C1q/CRT interactions and thus T. cruzi infectivity.  相似文献   
6.
Human infection with non-typhoidal Salmonella serovars (NTS) infrequently causes invasive systemic disease and bacteremia. To understand better the nature of invasive NTS (iNTS), we studied the gene content and the pathogenicity of bacteremic strains from twelve serovars (Typhimurium, Enteritidis, Choleraesuis, Dublin, Virchow, Newport, Bredeney, Heidelberg, Montevideo, Schwarzengrund, 9,12:l,v:- and Hadar). Comparative genomic hybridization using a Salmonella enterica microarray revealed a core of 3233 genes present in all of the iNTS strains, which include the Salmonella pathogenicity islands 1–5, 9, 13, 14; five fimbrial operons (bcf, csg, stb, sth, sti); three colonization factors (misL, bapA, sinH); and the invasion gene, pagN. In the iNTS variable genome, we identified 16 novel genomic islets; various NTS virulence factors; and six typhoid-associated virulence genes (tcfA, cdtB, hlyE, taiA, STY1413, STY1360), displaying a wider distribution among NTS than was previously known. Characterization of the bacteremic strains in C3H/HeN mice showed clear differences in disease manifestation. Previously unreported characterization of serovars Schwarzengrund, 9,12:l,v:-, Bredeney and Virchow in the mouse model showed low ability to elicit systemic disease, but a profound and elongated shedding of serovars Schwarzengrund and 9,12:l,v:- (as well as Enteritidis and Heidelberg) due to chronic infection of the mouse. Phenotypic comparison in macrophages and epithelial cell lines demonstrated a remarkable intra-serovar variation, but also showed that S. Typhimurium bacteremic strains tend to present lower intracellular growth than gastroenteritis isolates. Collectively, our data demonstrated a common core of virulence genes, which might be required for invasive salmonellosis, but also an impressive degree of genetic and phenotypic heterogeneity, highlighting that bacteremia is a complex phenotype, which cannot be attributed merely to an enhanced invasion or intracellular growth of a particular strain.  相似文献   
7.
The invariant properties of human cortical neurons cannot be studied directly by fMRI due to its limited spatial resolution. Here, we circumvented this limitation by using fMR adaptation, namely, reduction of the fMR signal due to repeated presentation of identical images. Object-selective regions (lateral occipital complex [LOC]) showed a monotonic signal decrease as repetition frequency increased. The invariant properties of fMR adaptation were studied by presenting the same object in different viewing conditions. LOC exhibited stronger fMR adaptation to changes in size and position (more invariance) compared to illumination and viewpoint. The effect revealed two putative subdivisions within LOC: caudal-dorsal (LO), which exhibited substantial recovery from adaptation under all transformations, and posterior fusiform (PF/LOa), which displayed stronger adaptation. This study demonstrates the utility of fMR adaptation for revealing functional characteristics of neurons in fMRI studies.  相似文献   
8.
9.
We analyzed regulation of the prosurvival Bcl-2 homologue A1, following T-cell receptor (TCR) or cytokine receptor engagement. Activation of CD4(+) or CD8(+) T cells by antigenic peptides induced an early but transient IL-2-independent expression of A1 and Bcl-xl mRNA and proteins, whereas expression of Bcl-2 was delayed and required IL-2. Cytokines such as IL-2, IL-4, IL-7 or IL-15 prevented apoptosis of activated T cells that effect being associated with the maintenance of Bcl-2, but not of A1 expression. However, restimulation of activated or posteffector T cells with antigenic peptide strongly upregulated A1 mRNA and maintained A1 protein expression. IL-4, IL-7 or IL-15 also prevented cell death of naive T cells. In those cells, cytokines upregulated Bcl-2, but not A1 expression. Therefore, in naive, activated and posteffector T cells, expression of A1 is dependent on TCR but not on cytokine receptor engagement, indicating that A1 is differently regulated from Bcl-xl and Bcl-2.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号