首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   3篇
  2023年   1篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2011年   1篇
  2010年   1篇
  2009年   3篇
  2008年   2篇
  2007年   2篇
  2006年   4篇
  2004年   4篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  1999年   2篇
  1998年   1篇
  1996年   1篇
排序方式: 共有32条查询结果,搜索用时 500 毫秒
1.
We assessed vegetation recovery on access roads removed after well abandonment in an active oil‐producing region of northern Great Plains grasslands. We compared extant vegetation on 58 roads, restored 3–22 years previously, to records of species seeded on each and to adjacent, undisturbed prairie, to evaluate main differences between the restored and adjacent community and to explore patterns in the restored plant community over time. The restored plant community was dominated by low richness of seeded non‐native and native grasses and forbs, whereas adjacent prairie had numerous, abundant native graminoids and shrubs and higher richness of native forbs. Cover of seeded species on roads was double that of colonizing species. Disparity in cover of dominant native grasses between the adjacent community and relatively narrow restored roadway suggests that conditions for germination and survival in roadbeds are poor. This is at least partly due to persistence of seeded species. Differences in restored plant composition over time were best explained by changes in species seeded, from non‐natives to natives, and secondarily by successional shifts from ruderal to perennial non‐seeded species. Of the 30 species seeded at least once on these roads, only 10 were commonly used. The long‐term influence of seeding choices in grassland road restorations implies that improvements in these practices will be critical to reversing ecological impacts of roads.  相似文献   
2.
3.
Carex is a globally distributed genus with more than 2000 species worldwide and Carex species are the characteristic vegetation of sedge meadow wetlands. In the mid-continental United States, Carex species are dominant in natural freshwater wetlands yet are slow to recolonize hydrologically restored wetlands. To aid in Carex revegetation efforts, we determined the dormancy breaking and temperature germination requirements of 12 Carex species. Seeds were cold stratified at 5/1°C for 0–6 months and then incubated in light at 5/1°C, 14/1°C, 22/8°C, 27/15°C, or 35/30°C. We found that all Carex species produced conditionally dormant seeds. The optimal temperature for germination for all but three species was 27/15°C. As is the case in other species with physiological dormancy, cold stratification increased germination percentages, broadened the temperature range suitable for germination, and increased germination rates for most species, but the magnitude of the effects varied among species. Many species germinated to 80% at 27/15°C without cold stratification and at 22/8°C with ≤1 month of stratification but required much longer stratification (up to 6 months depending on the species) to germinate to 80% at 14/1°C and 35/30°C. Our findings illustrate how a stratification pretreatment can greatly benefit Carex seed sowing efforts by triggering rapid germination to higher percentages. We recommend that cold stratification be targeted towards species with strong dormancy or used across a wider range of species when seed supplies for restoration are limiting. For Carex revegetation, establishing Carex canopies rapidly may help to prevent the invasion of undesirable species such as Phalaris arundinacea.  相似文献   
4.
Historical data from the 1930s were compared with new data gathered during the 2000s to evaluate the effects of increased numbers of larger stature submersed species (both elodeids and characeans) on resident isoetid communities. The cover and species richness of submersed species were assessed in 23 seepage lakes in northwestern Wisconsin, USA, using randomly located 1 m × 1 m plots. Water clarity, conductivity and residential land use were determined on a whole-lake basis and the sediment type and water depth were recorded at each plot. The probability of elodeids or characeans occurring in isoetid plots increased with the number of elodeids and characeans gained by a lake since the 1930s, with additions ranging from two to 15 species per lake. However, not all species were equally likely to co-occur with isoetids. Six elodeid species (Najas flexilis, Najas gracillima, Potamogeton gramineus, Potamogeton pusillus, Potamogeton spirillus and Vallisneria americana) along with Chara spp. were the most frequent isoetid associates, while other species that were common in the lakes, such as Elodea canadensis and Potamogeton robbinsii, were less frequent in isoetid plots. The lake-wide proportion of isoetid plots colonized by elodeids or characeans ranged from 5% to 100%, with increasing conductivity and total elodeids (plus Chara spp. and Nitella spp.) the strongest predictors of this colonization. Approximately half (49.6%) of all isoetid plots sampled had elodeids or characeans present (39.2% elodeids, 7.4% elodeids and characeans, 3.0% characeans), and isoetid cover and species richness were lower when these larger stature species were present. The risks this colonization poses for the long-term viability of isoetid species appeared to depend on multiple factors, including whole-lake characteristics, opportunities for refuge, and connections among regional isoetid populations. There was evidence of a time lag between the introduction of elodeid or characean species to a lake and invasion of isoetid plots within the lake, a process that deserves further study.  相似文献   
5.
Size asymmetry in plant light acquisition complicates predictions of competitive outcomes in light-limited communities. We present a mathematically tractable model of asymmetric competition for light and discuss its implications for predicting outcomes of competition during establishment in two-, three-, and many-species communities. In contrast to the resource-reduction model of symmetric competition for a single resource, the model we present predicts that outcomes of asymmetric competition for light will sometimes depend on the timing of establishment and the consequent hierarchy among species in canopy position. Competitive outcomes in the model depend on the minimum light requirements (L(c)) and self-shading of species lower in the canopy compared to the light available (L(out)(*)) beneath species higher in the canopy. Succession progresses towards species with decreasing values for L(c), but arrested successions occur when initial dominants have relatively high values for L(c) but low values for L(out)(*), leading to founder control. A theoretically limitless number of species may coexist in competition for light when dominance is founder controlled. These model predictions have implications for an array of applied ecological questions, including methods to control invasive species in light-limited restored ecosystems.  相似文献   
6.
Abstract Rapid establishment by aggressive plants such as Phalaris arundinacea (reed canarygrass) often interferes with sedge meadow establishment in restored prairie pothole wetlands in the mid‐continental United States. Introducing a cover crop during community establishment might suppress P. arundinacea invasion in restored prairie potholes by reducing resource availability. We evaluated two potential cover crops, Echinochloa crusgalli (barnyardgrass) and Polygonum lapathifolium (nodding smartweed), for suppressing P. arundinacea invasion in an experimental wetland using replacement series competition experiments. Further, we assessed the effects of E. crusgalli and P. lapathifolium on sedge meadow establishment by sowing Carex hystericina, a common wetland sedge, as a third species at a constant density in the replacement experiments. Echinochloa crusgalli, compared with no cover crop, reduced P. arundinacea biomass by more than 1,000 g/m2 (65%) after two growing seasons. Polygonum lapathifolium did not affect P. arundinacea biomass. Dense E. crusgalli canopies in the first year and thick E. crusgalli thatch in the second year substantially reduced light availability for P. arundinacea establishment. Echinochloa crusgalli also reduced C. hystericina biomass by more than 1,800 g/m2 (99%) after two growing seasons. Carex hystericina biomass was similar in plots sown with E. crusgalli to P. arundinacea monocultures. Neither E. crusgalli nor P. lapathifolium is likely to improve sedge meadow restoration success. These trends were not sensitive to initial sowing density or elevation above water level. Without methods to suppress P. arundinacea invasions, sedge meadow restorations may often fail. Thorough site preparation to remove P. arundinacea propagule sources before restoration is essential.  相似文献   
7.
Despite their central role in lakeshore restoration, most littoral wetland plantings fail. The reasons for these failures are poorly understood, in part due to limited information on the effects of planting time, water depth, and propagation on the survival of emergent macrophyte plantings. We planted pots and prevegetated mats of softstem bulrush (Schoenoplectus tabernaemontani (C.C. Gmel.) Palla) at two different water depths (0–30 and 31–60 cm) in five lakes each month between May and September 2006 to evaluate the effects of planting month, water depth, and transplant type on the survival of planted S. tabernaemontani. Overall survival decreased from 73% at 30 days after planting to 40% pre-winter to 15% post-winter. The timing of planting was the most important factor influencing bulrush survival. Survival of bulrush planted later in the growing season is poor, regardless of the transplant type used, and should be avoided. During the optimal planting season of early-to-mid summer, transplants from pots are more likely to outperform mats, despite lower pre-planting biomass. Water depth is only important immediately after planting, after which time, its influence on successful establishment diminishes. Overall, our research indicated that key choices made by the practitioner can improve the likelihood that transplants establish in littoral wetland restorations.  相似文献   
8.
Efforts to eradicate invasive plants in restorations can unintentionally create conditions that favor reinvasion over the establishment of desired species, especially when remnant invasive propagules persist. Reducing resources needed by the invader for seedling establishment, however, may be an effective strategy to prevent reinvasion. Propagules of Phalaris arundinacea persist after removal from sedge meadow wetlands and reestablish quickly in posteradication conditions, hindering community restoration. A study was conducted in two experimental wetlands with controlled hydrologic regimes to determine if reducing light by sowing short‐lived, nonpersistent native cover crops or immobilizing soil N by incorporating soil–sawdust amendments can prevent Phalaris reinvasion, allowing native communities to recover. A 10‐species perennial target community and Phalaris were sown with high‐diversity, low‐diversity, or no cover crops in soils with or without sawdust, and seedling emergence, establishment, and growth were measured. High‐diversity cover crops reduced light, decreasing Phalaris and target community seedling establishment by 89 and 57%, respectively. Short‐term nitrogen reduction in sawdust‐amended soils delayed Phalaris seedling emergence and decreased Phalaris seedling establishment by 59% but did not affect total target community seedling establishment. The target community reduced Phalaris seedling establishment as effectively as cover crops did. In plots where the target community was grown, amending soils with sawdust further reduced Phalaris seedling growth but not establishment. Results show that use of cover crops can reduce seedling establishment of desired species and is counterproductive to restoration goals. Further, establishing target species is more important and practical for limiting Phalaris reinvasion than is immobilizing nitrogen.  相似文献   
9.
10.
For restoration to be an effective strategy to reverse large‐scale habitat loss and land degradation, funding programs need policies that promote selection of and commitment to projects that can reasonably be expected to succeed. Programmatic project selection practices have received minimal formal evaluation, despite their importance. In this study, we considered the extent to which a program needs to consider both ecological and organizational factors during project selection in order to minimize the incidence of project failure. Our assessment of a long‐term program that funds ecological restoration efforts across Minnesota (U.S.A.), based on project records, manager surveys, and field surveys, yielded several broadly relevant insights. First, factors well understood to confer ecological resilience (level of landscape alteration and starting condition) were clearly associated with restoration outcomes, regardless of time‐since‐initiation of restoration. Second, restoration of low‐resilience ecosystems is typically a labor‐ and skill‐intensive enterprise for organizations that undertake them. Our analysis revealed four organizational limitations, in addition to insufficient funds, that hindered capacity to keep projects on‐track: lack of planning and goal‐setting, inadequate staffing, leadership change, and incomplete records. Third, to reduce risk, programs do not necessarily need to avoid challenging projects, but do need to consider whether organizations proposing restorations have adequate internal capacity to competently plan and to sustain actions for a duration sufficient to restore ecological resilience. If a restoration is degraded enough to require human intervention to recover, the outcome of a project is as likely to reflect its organizational reality as much as its ecological circumstances.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号